902 resultados para Software Edilim


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manual describes how to use the Iowa Bridge Backwater software. It also documents the methods and equations used for the calculations. The main body describes how to use the software and the appendices cover technical aspects. The Bridge Backwater software performs 5 main tasks: Design Discharge Estimation; Stream Rating Curves; Floodway Encroachment; Bridge Backwater; and Bridge Scour. The intent of this program is to provide a simplified method for analysis of bridge backwater for rural structures located in areas with low flood damage potential. The software is written in Microsoft Visual Basic 6.0. It will run under Windows 95 or newer versions (i.e. Windows 98, NT, 2000, XP and later).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la actualidad las tecnologías de la información son utilizadas en todos los ámbitos empresariales. Desde sistemas de gestión (ERPs) pasando por la gestión documental, el análisis de información con sistema de Bussines Intelligence, pudiendo incluso convertirse en toda una nueva plataforma para proveer a las empresas de nuevos canales de venta, como es el caso deInternet.De la necesidad inicial de nuestro cliente en comenzar a expandirse por un nuevo canal de venta para poder llegar a nuevos mercados y diversificar sus clientes se inicia la motivación de este TFC.Dadas las características actuales de las tecnologías de la información e internet, estas conforman un binomio perfecto para definir este TFC que trata todos los aspectos necesarios para llegar a obtener un producto final como es un portal web inmobiliario adaptado a los requisitos demandados por los usuarios actuales de Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigaremos cómo las redes de colaboración y el softwarelibre permiten adaptar el centro educativo al entorno, cómo pueden ayudar al centro a potenciar la formación profesional y garantizar la durabilidad de las acciones, con el objetivo que perdure el conocimiento y la propia red de colaboración para una mejora educativa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabajo que muestra, haciendo uso de tecnologías libres y basándonos en sistemas operativos abiertos, cómo es posible mantener un nivel alto de trabajo para una empresa que se dedica a implementar y realizar desarrollos en tecnologías de software libre. Se muestra el montaje de un laboratorio de desarrollo que nos va a permitir entender el funcionamiento y la implementación tanto de GNU/Linux como del software que se basa en él dentro de la infraestructura de la empresa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to build mock-ups of complete yerba mate plants in several stages of development, using the InterpolMate software, and to compute photosynthesis on the interpolated structure. The mock-ups of yerba-mate were first built in the VPlants software for three growth stages. Male and female plants grown in two contrasting environments (monoculture and forest understory) were considered. To model the dynamic 3D architecture of yerba-mate plants during the biennial growth interval between two subsequent prunings, data sets of branch development collected in 38 dates were used. The estimated values obtained from the mock-ups, including leaf photosynthesis and sexual dimorphism, are very close to those observed in the field. However, this similarity was limited to reconstructions that included growth units from original data sets. The modeling of growth dynamics enables the estimation of photosynthesis for the entire yerba mate plant, which is not easily measurable in the field. The InterpolMate software is efficient for building yerba mate mock-ups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim. Several software packages (SWP) and models have been released for quantification of myocardial perfusion (MP). Although they all are validated against something, the question remains how well their values agree. The present analysis focused on cross-comparison of three SWP for MP quantification of 13N-ammonia PET studies. Materials & Methods. 48 rest and stress MP 13N-ammonia PET studies of hypertrophic cardiomyopathy (HCM) patients (Sciagrà et al., 2009) were analysed with three SW packages - Carimas, PMOD, and FlowQuant - by three observers blinded to the results of each other. All SWP implement the one-tissue-compartment model (1TCM, DeGrado et al. 1996), and first two - the two-tissue-compartment model (2TCM, Hutchins et al. 1990) as well. Linear mixed model for the repeated measures was fitted to the data. Where appropriate we used Bland-Altman plots as well. The reproducibility was assessed on global, regional and segmental levels. Intraclass correlation coefficients (ICC), differences between the SWPs and between models were obtained. ICC≥0.75 indicated excellent reproducibility, 0.4≤ICC<0.75 indicated fair to good reproducibility, ICC<0.4 - poor reproducibility (Rosner, 2010). Results. When 1TCM MP values were compared, the SW agreement on global and regional levels was excellent, except for Carimas vs. PMOD at RCA: ICC=0.715 and for PMOD vs. FlowQuant at LCX:ICC=0.745 which were good. In segmental analysis in five segments: 7,12,13, 16, and 17 the agreement between all SWP was excellent; in the remaining 12 segments the agreement varied between the compared SWP. Carimas showed excellent agreement with FlowQuant in 13 segments and good in four - 1, 5, 6, 11: 0.687≤ICCs≤0.73; Carimas had excellent agreement with PMOD in 11 segments, good in five_4, 9, 10, 14, 15: 0.682≤ICCs≤0.737, and poor in segment 3: ICC=0.341. PMOD had excellent agreement with FlowQuant in eight segments and substantial-to-good in nine_1, 2, 3, 5, 6,8-11: 0.585≤ICCs≤0.738. Agreement between Carimas and PMOD for 2TCM was good at a global level: ICC=0.745, excellent at LCX (0.780) and RCA (0.774), good at LAD (0.662); agreement was excellent for ten segments, fair-to-substantial for segments 2, 3, 8, 14, 15 (0.431≤ICCs≤0.681), poor for segments 4 (0.384) and 17 (0.278). Conclusions. The three SWP used by different operators to analyse 13N-ammonia PET MP studies provide results that agree well at a global level, regional levels, and mostly well even at a segmental level. Agreement is better for 1TCM. Poor agreement at segments 4 and 17 for 2TCM needs further clarification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DnaSP is a software package for a comprehensive analysis of DNA polymorphism data. Version 5 implements a number of new features and analytical methods allowing extensive DNA polymorphism analyses on large datasets. Among other features, the newly implemented methods allow for: (i) analyses on multiple data files; (ii) haplotype phasing; (iii) analyses on insertion/deletion polymorphism data; (iv) visualizing sliding window results integrated with available genome annotations in the UCSC browser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo desarrolla una aplicación basada en la tecnología Android para la atención de clientes en despachos de abogados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xerrada de cloenda de la Setmana internacional d'accés obert 2011 a la UOC, a càrrec de l'advocat Josep Jover. Per què les estratègies altruistes guanyen les egoistes en el programari lliure i en el #15m? El moviment #15m, igual que el programari, a diferència dels béns materials, no es pot posseir, ja que en pot gaudir (formant-ne part) un nombre indeterminat de persones sense que per això hagi de privar ningú de tenir-lo al seu torn. I això porta a girar com un mitjó la manera com manegen la informació les universitats, i quina és la missió de la universitat en la nova societat. En el futur immediat, valorarem les universitats no per la informació que guarden, que fora sempre serà millor i més extensa, sinó per la capacitat de crear masses crítiques, sia de recerca de coneixement, de capacitació humana, d'enllaç entre iguals... Les universitats hauran d'implantar el model o quedaran relegades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closing talk of the Open Access Week 2011 at the UOC, by Josep Jover. Why do altruistic strategies beat selfish ones in the spheres of both free software and the #15m movement? The #15m movement, like software but unlike tangible goods, cannot be owned. It can be used (by joining it) by an indeterminate number of people without depriving anyone else of the chance to do the same. And that turns everything on its head: how universities manage information and what their mission is in this new society. In the immediate future, universities will be valued not for the information they harbour, which will always be richer and more extensive beyond their walls, but rather for their capacity to create critical masses, whether of knowledge research, skill-building, or networks of peers... universities must implement the new model or risk becoming obsolete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Current bilevel positive-pressure ventilators for home noninvasive ventilation (NIV) provide physicians with software that records items important for patient monitoring, such as compliance, tidal volume (Vt), and leaks. However, to our knowledge, the validity of this information has not yet been independently assessed. METHODS: Testing was done for seven home ventilators on a bench model adapted to simulate NIV and generate unintentional leaks (ie, other than of the mask exhalation valve). Five levels of leaks were simulated using a computer-driven solenoid valve (0-60 L/min) at different levels of inspiratory pressure (15 and 25 cm H(2)O) and at a fixed expiratory pressure (5 cm H(2)O), for a total of 10 conditions. Bench data were compared with results retrieved from ventilator software for leaks and Vt. RESULTS: For assessing leaks, three of the devices tested were highly reliable, with a small bias (0.3-0.9 L/min), narrow limits of agreement (LA), and high correlations (R(2), 0.993-0.997) when comparing ventilator software and bench results; conversely, for four ventilators, bias ranged from -6.0 L/min to -25.9 L/min, exceeding -10 L/min for two devices, with wide LA and lower correlations (R(2), 0.70-0.98). Bias for leaks increased markedly with the importance of leaks in three devices. Vt was underestimated by all devices, and bias (range, 66-236 mL) increased with higher insufflation pressures. Only two devices had a bias < 100 mL, with all testing conditions considered. CONCLUSIONS: Physicians monitoring patients who use home ventilation must be aware of differences in the estimation of leaks and Vt by ventilator software. Also, leaks are reported in different ways according to the device used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Open source is typically outside of normal commercial software procurement processes.The Challenges.Increasingly diverse and distributed set of development resources.Little/no visibility into the origins of the software.Supply Chain Comparison: Hardware vs Software.Open source has revolutionized the mobile and device landscape, other industries will follow.Supply chain management techniques from hardware are useful for managing software.SPDX A standard format for communicating a software Bill of Materials across the supply chain.Effective management and control requires training, tools, processes and standards.