882 resultados para Soft proof
Resumo:
We have extended our previous work (Rawlings et al 2010 Phys. Rev. B 82 085404) on simulating magnetic force microscopy (MFM) images for magnetically soft samples to include an accurate representation of coated MFM tips. We used an array of square 500 nm nanomagnets to evaluate our improved MFM model. A quantitative comparison between model and experiment was performed for lift heights ranging from 20 to 100 nm. No fitting parameters were used in our comparison. For all lift heights the qualitative agreement between model and experiment was significantly improved. At low lift heights, where the magnetic signal was strong, the difference between theory and experiment was less than 30%.
Resumo:
To maximize the utility of high land cost in urban development, underground space is commonly exploited, both to reduce the load acting on the ground and to increase the space available. The execution of underground constructions requires the use of appropriate retaining wall and bracing systems. Inadequate support systems have always been a major concern, as any excessive ground movement induced during excavation could cause damage to neighboring structures, resulting in delays, disputes and cost overruns. Experimental findings on the effect of wall stiffness, depth of the stiff stratum away from the wall toe and wall toe fixity condition are presented and discussed. © 2012 Taylor & Francis Group.
Resumo:
We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. We then examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates. © 2012 IEEE.
Resumo:
When searching for characteristic subpatterns in potentially noisy graph data, it appears self-evident that having multiple observations would be better than having just one. However, it turns out that the inconsistencies introduced when different graph instances have different edge sets pose a serious challenge. In this work we address this challenge for the problem of finding maximum weighted cliques. We introduce the concept of most persistent soft-clique. This is subset of vertices, that 1) is almost fully or at least densely connected, 2) occurs in all or almost all graph instances, and 3) has the maximum weight. We present a measure of clique-ness, that essentially counts the number of edge missing to make a subset of vertices into a clique. With this measure, we show that the problem of finding the most persistent soft-clique problem can be cast either as: a) a max-min two person game optimization problem, or b) a min-min soft margin optimization problem. Both formulations lead to the same solution when using a partial Lagrangian method to solve the optimization problems. By experiments on synthetic data and on real social network data we show that the proposed method is able to reliably find soft cliques in graph data, even if that is distorted by random noise or unreliable observations. Copyright 2012 by the author(s)/owner(s).
Resumo:
Recent progress in material science has proved that high-temperature superconductors, such as bulk melt-processed yttrium barium copper oxide (YBCO) single domains, have a great potential to trap significant magnetic fields. In this paper, we will describe a novel method of YBCO magnetization that only requires the applied field to be at the level of a permanent magnet. Instead of applying a pulsed high magnetic field on the YBCO, a thermally actuated material (TAM), such as Mg0.15}hbox{Cu}0.15} hbox{Zn0.7 Ti0.04}Fe1.96boxO4, has been used as an intermedium to create a travelling magnetic field by changing the local temperature so that the local permeability is changed to build up the magnetization of the YBCO gradually after multiple pumping cycles. It is well known that the relative permeability of ferrite is a function of temperature and its electromagnetic properties can be greatly changed by adding dopants such as Mg or Ti; therefore, it is considered to be the most promising TAM for future flux pumping technology. Ferrite samples were fabricated by means of the conventional ceramic method with different dopants. Zinc and iron oxides were used as raw materials. The samples were sintered at 1100 C, 1200 C} , and 1300 C. The relative permeability of the samples was measured at temperatures ranging from 77 to 300 K. This work investigates the variation of the magnetic properties of ferrites with different heat treatments and doping elements and gives a smart insight into finding better ferrites suitable for flux pumping technology. © 2002-2011 IEEE.
Resumo:
The quasi-static and dynamic responses of laminated beams of equal areal mass, made from monolithic CFRP and Ultra high molecular weight Polyethylene (UHMWPE), have been measured. The end-clamped beams were impacted at mid-span by metal foam projectiles to simulate localised blast loading. The effect of clamping geometry on the response was investigated by comparing the response of beams bolted into the supports with the response of beams whose ends were wrapped around the supports. The effect of laminate shear strength upon the static and dynamic responses was investigated by testing two grades of each of the CFRP and UHMWPE beams: (i) CFRP beams with a cured matrix and uncured matrix, and (ii) UHMWPE laminates with matrices of two different shear strengths. Quasi-static stretch-bend tests indicated that the load carrying capacity of the UHWMPE beams exceeds that of the CFRP beams, increases with diminishing shear strength of matrix, and increases when the ends are wrapped rather than through-bolted. The dynamic deformation mode of the beams is qualitatively different from that observed in the quasi-static stretch-bend tests. In the dynamic case, travelling hinges emanate from the impact location and propagate towards the supports; the beams finally fail by tensile fibre fracture at the supports. The UHMWPE beams outperform the CFRP beams in terms of a lower mid-span deflection for a given impulse, and a higher failure impulse. Also, the maximum attainable impulse increases with decreasing shear strength for both the UHMWPE and CFRP beams. The ranking of the beams for load carrying capacity in the quasi-static stretch-bend tests is identical to that for failure impulse in the impact tests. Thus, the static tests can be used to gauge the relative dynamic performances of the beams. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The use of catenary steel-compliant-riser (SCR) systems has increased as hydrocarbon production has moved progressively farther offshore and into deeper waters. The issue of fatigue damage caused by cyclic interaction of a riser with the seabed has gained prominence with the widespread use of SCRs and with the lengthening of the spans. The problem involves a number of complex factors, including trench configuration, nonlinear soil stiffness, breakaway of the riser from the seafloor, and degradation of soil resistance during cyclic loading. This paper presents a soilinteraction model capable of modeling these complexities, using input parameters that can be obtained with reasonable expenditure. Model simulations for typical offshore soft-soil conditions indicate that the model is capable of realistic predictions of cyclic bending moments. The degradation of soil resistance has a major effect on cyclic bending moments, particularly when uplift motions at the riser touchdown point (TDP) are large. © 2008 Society of Petroleum Engineers.
Resumo:
Submarine landslides pose considerable hazards to coastal communities and offshore structures. The difficulty and cost of obtaining undisturbed samples of offshore soils for determining material properties required for slope stability analyses contribute to the complexity of the problem. There are significant advantages in using a simplified model for the seismic response of submarine slopes, compatible with the limited amount of information that can be realistically gathered, but still able to capture the key elements of clay behavior. This paper illustrates the process of parameter determination and calibration of the SIMPLE DSS model, developed for the study of seismic triggering of submarine slope instabilities. The selection of parameters and predictions of monotonic and cyclic simple shear response are carried out for Boston Blue Clay, a marine clay extensively studied and with a large experimental database available in the literature. The results show that the simplified model is able to reproduce the important trends in the response of the soil, especially in accounting for the effect of the slope.
Resumo:
The geological profile of many submerged slopes on the continental shelf consists of normally to lightly overconsolidated clays with depths ranging from a few meters to hundreds of meters. For these soils, earthquake loading can generate significant excess pore water pressures at depth, which can bring the slope to a state of instability during the event or at a later time as a result of pore pressure redistribution within the soil profile. Seismic triggering mechanisms of landslide initiation for these soils are analyzed with the use of a new simplified model for clays which predicts realistic variations of the stress-strain-strength relationships as well as pore pressure generation during dynamic loading in simple shear. The proposed model is implemented in a finite element program to analyze the seismic response of submarine slopes. These analyses provide an assessment of the critical depth and estimated displacements of the mobilized materials and thus are important components for the estimation of submarine landslide-induced tsunamis. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The Responsive Particle Dynamics model is a very efficient method to account for the transient forces present in complex fluids, such as solutions of entangled polymers. This coarse-grained model considers a solution of particles that are made of a core and a corona. The cores typically interact through conservative interactions, while the coronae transiently penetrate each other to form short-lived temporary interactions, typically of entropic origin. In this study, we reformulate the resulting rheological model within the general framework of nonequilibrium thermodynamics called General Equation for the Nonequilibrium Reversible-Irreversible Coupling. This allows us to determine the consistency of the model, from a mechanistic and thermodynamic point of view, and to isolate the reversible and irreversible contributions to the dynamics of the model system. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The immunoglobulin (Ig) joining (J) chain plays an important role in the formation of polymeric Igs and their transport into secretions. In the present study, the cDNA sequence of J chain has been cloned from the Chinese soft-shelled turtle (Pelodiscus sinensis) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The cDNA sequence is 2347 bp in length and contains an open reading frame of 480 bp encoding 160 aa including the signal sequence. The deduced amino acid sequence has a high degree of homology with that of an already reported turtle J chain (80.7%), and of chicken (71.3%). By using real-time quantitative RT-PCR analysis, a significant up-regulation of J-chain transcripts was observed in spleen, kidney and blood of turtles injected with inactivated Aeromonas hydrophila, indicating the immune role of J chain in response to bacterial infection. (C) 2009 Elsevier B.V. All rights reserved.
IgM, IgD and IgY and their expression pattern in the Chinese soft-shelled turtle Pelodiscus sinensis
Resumo:
Three Ig isotypes, IgM, IgD, and IgA, were previously known in reptiles. Here, in this report we describe IgM, IgD and a novel immunoglobulin heavy-chain isotype upsilon (IgY) in Chinese soft-shelled turtle (Pelodiscus sinensis). The IgM and IgY constant domains are characteristically similar to their counterparts described in other vertebrates. The expression of IgM and IgD were detected at mRNA level early during embryonic development, and their expression increased during further development. However, the IgY expression was not detected in larval turtles until 90 days after hatching-out. The increase in the transcription of these three Ig molecules was analyzed by using real-time PCR in spleen, kidney and blood following the injection of inactivated Aeromonas hydrophila. The primary increase in the expression of these three Igs was observed I week after the first injection, although not statistically significant, and the second injection 2 weeks after the first injection provoked a significant increase in the expression of these Igs, revealing a pattern of primary and secondary antibody response in the turtle. The present study represents the first report on reptile IgY and the pattern of IgM, IgD and IgY transcription in reptiles. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study, an IL-8 homologue has been cloned and identified from a reptile, Chinese soft-shelled turtle for the first time. The full-length cDNA of turtle IL-8 was 1188 bp and contained a 312 bp open reading frame (ORF) coding for a protein of 104 amino acids. The chemokine CXC domain, which contained Glu-Leu-Arg (ELR) motif and four cysteine residues, was well conserved in turtle IL-8. The 4924 bp genomic DNA of turtle IL-8 contained four exons and three introns. Phylogenetic analysis showed that the amino acid sequence of turtle IL-8 clustered together with birds. RT-PCR analysis showed that turtle IL-8 mRNA was constitutively expressed liver, spleen, kidney, heart, blood and intestine tissues of control turtles. Real-time quantitative PCR analysis further indicated that the turtle IL-8 mRNA expression was apparent in various tissues at 8 h and up-regulated significantly during 8 h-7 d after Aeromonas hydrophila infection. The present studies will help us to understand the evolution of IL-8 molecule and the inflammatory response mechanism in reptiles. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Expressed sequence tag (EST) analysis is an efficient tool for gene discovery and profiling gene expression. Aeromonas hydrophila, a ubiquitous waterborne bacterium, is one of the most frequent pathogens isolated from diseased aquatic organisms. In order to understand the molecular mechanism of anti-bacteria immune response in reptile, we have investigated the differentially expressed genes in Chinese soft-shelled turtle (Trionyx sinensis) experimentally infected with A. hydrophila by suppression subtractive hybridization (SSH). Forty-two genes were identified from more than 200 clones, of which 25 genes are found for the first time in reptiles, and classified into 6 categories: 18 in defense/immunity. 4 in catalysis, 2 in retrotransposon; 2 in cell signal transduction, 5 in cell metabolism, 10 in protein expression, and 1 in cell structure. Of the 42 differentially expressed genes, 6 genes, IL-8, serum amyloid A (SAA), CD9, CD59, activating transcription factor 4 (ATF4) and cathepsin L genes, were further observed to be up-regulated in the infected turtles by virtual Northern hybridization and RT-PCR assays. (C) 2008 Elsevier B.V. All rights reserved.