929 resultados para Small open reading frame
Resumo:
A cDNA coding for a digestive cathepsin L, denominated Sl-CathL, was isolated from a cDNA library of Sphenophorus levis larvae, representing the most abundant EST (10.49%) responsible for proteolysis in the midgut. The open reading frame of 972 bp encodes a preproenzyme similar to midgut cathepsin L-like enzymes in other coleopterans. Recombinant Sl-CathL was expressed in Pichia pastoris, with molecular mass of about 42 kDa. The recombinant protein was catalytically activated at low pH and the mature enzyme of 39 kDa displayed thermal instability and maximal activity at 37 degrees C and pH 6.0. Immunocytochemical analysis revealed Sl-CathL production in the midgut epithelium and secretion from vesicles containing the enzyme into the gut lumen, confirming an important role for this enzyme in the digestion of the insect larvae. The expression profile identified by RT-PCR through the biological cycle indicates that Sl-CathL is mainly produced in larval stages, with peak expression in 30-day-old larvae. At this stage, the enzyme is 1250-fold more expressed than in the pupal fase, in which the lowest expression level is detected. This enzyme is also produced in the adult stage, albeit in lesser abundance, assuming the presence of a different array of enzymes in the digestive system of adults. Tissue-specific analysis revealed that Sl-CathL mRNA synthesis occurs fundamentally in the larval midgut, thereby confirming its function as a digestive enzyme, as detected in immunolocalization assays. The catalytic efficiency of the purified recombinant enzyme was calculated using different substrates (Z-Leu-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC) and rSl-CathL exhibited hydrolysis preference for Z-Leu-Arg-AMC (k(cat)/K-m = 37.53 mM S-1), which is similar to other insect cathepsin L-like enzymes. rSl-CathL activity inhibition assays were performed using four recombinant sugarcane cystatins. rSl-CathL was strongly inhibited by recombinant cystatin CaneCPI-4 (K-i = 0.196 nM), indicating that this protease is a potential target for pest control. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Dengue is the most important mosquito-borne viral disease worldwide. Dengue virus comprises four antigenically related viruses named dengue virus type 1 to 4 (DENV1-4). DENV-3 was re-introduced into the Americas in 1994 causing outbreaks in Nicaragua and Panama. DENV-3 was introduced in Brazil in 2000 and then spread to most of the Brazilian States, reaching the neighboring country, Paraguay in 2002. In this study, we have analyzed the phylogenetic relationship of DENV-3 isolated in Brazil and Paraguay with viruses isolated worldwide. We have also analyzed the evolutionary divergence dynamics of DENV-3 viruses. Results: The entire open reading frame (ORF) of thirteen DENV-3 isolated in Brazil (n = 9) and Paraguay (n = 4) were sequenced for phylogenetic analysis. DENV-3 grouped into three main genotypes (I, II and III). Several internal clades were found within each genotype that we called lineage and sub-lineage. Viruses included in this study belong to genotype III and grouped together with viruses isolated in the Americas within the lineage III. The Brazilian viruses were further segregated into two different sub-lineage, A and B, and the Paraguayan into the sub-lineage B. All three genotypes showed internal grouping. The nucleotide divergence was in average 6.7% for genotypes, 2.7% for lineages and 1.5% for sub-lineages. Phylogenetic trees constructed with any of the protein gene sequences showed the same segregation of the DENV-3 in three genotypes. Conclusion: Our results showed that two groups of DENV-3 genotypes III circulated in Brazil during 2002-2009, suggesting different events of introduction of the virus through different regions of the country. In Paraguay, only one group DENV-3 genotype III is circulating that is very closely related to the Brazilian viruses of sub-lineage B. Different degree of grouping can be observed for DENV-3 and each group showed a characteristic evolutionary divergence. Finally, we have observed that any protein gene sequence can be used to identify the virus genotype.
Resumo:
From September 2005 to December 2006, in order to define the prevalence of Helicobacter pullorum in broiler chickens, laying hens and turkey, a total of 365 caecum contents of animals reared in 76 different farms were collected at the slaughterhouse. A caecum content of a ostrich was also sampled. In addition, with the aim of investigating the occurrence of H. pullorum in humans, 151 faeces were collected at the Sant’Orsola-Malpighi University Hospital of Bologna from patients suffering of gastroenteritis. A modified Steele–McDermott membrane filter method was used. Gram-negative curved rod bacteria were preliminary identified as H. pullorum by a PCR assay based on 16S rRNA, then subjected to a RFLP-PCR assay to distinguish between H. pullorum and H. canadensis. One isolate from each farm was randomly selected for phenotypic characterization by biochemical methods and 1D SDSPAGE analysis of whole cell proteins profiles. Minimum Inhibitory Concentration (MIC) for seven different antibiotics were also determined by agar dilution method. Moreover, to examine the intraspecific genomic variability, two strains isolated from 17 different farms were submitted to genotyping by Pulse-Field Gel Electrophoresis (PFGE). In order to assess the molecular basis of fluorquinolone resistance in H. pullorum, gyrA of H. pullorum CIP 104787T was sequenced and nucleotide sequences of the Quinolone Resistance Determining Region (QRDR) of a total of 18 poultry isolates, with different MIC values for ciprofloxacin and nalidixic acid, were compared. According to the PCR and PCR-RFLP results, 306 out of 366 animals examined were positive for H. pullorum (83,6%) and 96,1% of farms resulted infected. All positive samples showed a high number of colonies (>50) phenotipically consistent with H. pullorum on the first isolation media, which suggests that this microrganism, when present, colonizes the poultry caecum at an elevate load. No human sample resulted positive for H. pullorum. The 1D SDS-PAGE whole protein profile analysis showed high similarity among the 74 isolates tested and with the type strain H. pullorum CIP 104787T. Regarding the MIC values, a monomodal distribution was found for ampicillin, chloramphenicol, gentamicin and nalidixic acid, whereas a bimodal trend was noticed for erythromycin, ciprofloxacin and tetracycline (indicating an acquired resistance for these antibiotics). Applying the breakpoints indicated by the CSLI, we may assume that all the H. pullorum tested are sensitive only to gentamicin. The intraspecific genomic variability observed in this study confirm that this species don’t have a clonal population structure, as motioned by other autors. The 2490 bp gyrA gene of H. pullorum CIP104787T with an Open Reading Frame (ORF) encoding a polypeptide of 829 amino acids was for the first time sequenced and characterized. All ciprofloxacin resistant poultry isolates showed ACA®ATA (Thr®Ile) substitution at codon 84 of gyrA corresponding to codons of gyrA 86, 87 and 83 of the Campylobacter jejuni, H. pylori and Escherichia coli, respectively. This substitution was functionally confirmed to be associated with the ciprofloxacin resistant phenotype of poultry isolates. This is the first report of isolation of H. pullorum in turkey and in ostrich, indicating that poultry species are the reservoir of this potential zoonotic microorganisms. In order to understand the potential role as food-borne human pathogen of H. pullorum, further studies must be carried on.
Resumo:
Die Schwämme (Porifera) sind eine reiche Quelle bioaktiver Naturstoffe. Viele dieser Naturstoffe besitzen das Potential, als Pharmazeutika, molekulare Sonden usw. eingesetzt oder weiterentwickelt zu werden. Die Beschaffung dieser Naturstoffe in ausreichenden Mengen stellt jedoch eines der größten Probleme bei der Testung und Produktion vielversprechender Substanzen dar. Der Transfer von DNA in Schwammzellen bzw. in komplette Organismen wäre ein vielversprechender Ansatz, dieses Problem zu lösen. Das Ziel dieser Arbeit war es deshalb, die Funktion und Struktur homologer Promotoren zu untersuchen und eine Methode des Gentransfers in Schwammzellen auszuarbeiten. Zu diesem Zweck wurde zusätzlich zu der bereits vorhandenen 5'-flankierenden Region des conventional PKC-Gens aus Geodia cydonium eine genomische Bibliothek von Suberites domuncula konstruiert, um diese mit Hilfe des DNA-Homologiescreenings nach den 5'-flankierenden Regionen des cPKC- und des SNZ (SnooZe)-Gens (SD_SNZG) zu durchsuchen. Die Klonierung und Sequenzierung sowohl des 5'-Bereichs als auch die Charakterisierung der Exon-Intron Struktur beider Gene wurde erfolgreich durchgeführt. In der 5'-Region des SNZ-Gens konnte dabei ein weiteres Gen (SD_SNO; SNZ proximal Open Reading Frame) identifiziert werden, das in einer 'Kopf-an-Kopf' Anordnung zu SD_SNZG orientiert ist. Sowohl SD_SNZG als auch SD_SNO wurden hochkonservierten Genfamilien zugeordnet, deren Vorkommen in Metazoen hier erstmals beschrieben wird.Funktionelle Studien mit Hilfe der Reportergene Luciferase und Enhanced Green Fluorescent Protein (EGFP) im heterologen System der NIH 3T3 Zellen wiesen sowohl dem cPKC-Promotor aus G. cydonium als auch dem SNZ-Promotor aus S. domuncula eine starke Promotoraktivität im Verhältnis zum SV40-Promotor nach. Die Aktivität des cPKC-Promotors aus S. domuncula dagegen war relativ schwach. Darüber hinaus konnte geklärt werden, daß die 5'-flankierende Region des SNZ-Gens bidirektionale Promotoraktivität aufweist und daß der G. cydonium cPKC-Promotor keine TATA-Box besitzt, sondern eine GC-Box für die basale Funktion benötigt.Als geeignete Methode zur Transfektion von Zellen des Schwamms S. domuncula erwies sich der ballistische Gentransfer mit Hilfe der Gene Gun. Homologe Promotoren konnten die sichtbare Expression des Reportergens EGFP jedoch nicht bewirken. Nur der virale CMV-Promotor erwies sich als hierfür geeignet.
Resumo:
Im tcdA-Gen des Clostridium difficile Stammes C34 wurde eine Insertion mit einer Größe von 1975 bp lokalisiert. Der als CdISt1 bezeichneten Insertion konnten charakteristische Merkmale von Gruppe I Introns und von Insertionselementen zugewiesen werden. Dem im 5 Bereich gelegenen Anteil ließen sich die Intron-spezifischen Eigenschaften zuordnen, im 3 Anteil wurden zwei offene Leseraster gefunden, die hohe Homologien zu Transposasen der IS605 Familie hatten. Funktionelle Analysen belegten die Spleißaktivität des chimären Ribozymes. CdISt1 konnte in mehren Kopien in allen untersuchten C. difficile Stämmen nachgewiesen werden. In anderen clostridialen Spezies konnte das Gruppe I Intron bislang nicht vorgefunden werden. Der Integrationsort in C. difficile war in allen untersuchten Fällen immer ein offenes Leseraster. Bislang waren Gruppe I Introns noch nie in bakteriellen offenen Leserastern beschrieben worden. Es kann angenommen werden, dass der chimäre Aufbau des Ribozymes die Integration in bakterielle offene Leseraster ermöglicht. Dabei wäre für die Spleißaktivität der Gruppe I Intron Anteil maßgeblich, die Mobilität würde über den IS Element Anteil vermittelt. Im Rahmen der Dissertationsarbeit konnten erste experimentelle Hinweise erbracht werden, dass das chimäre Ribozym an der evolution clostridialer Proteine beteiligt sein kann, wovon seinen Wirt C. difficile entsprechend profitieren würde.An insertion of 1975 bp is situated in the tcdA-gene of Clostridium difficile strain C34. The insertion was designated as CdISt1 and it had characteristics of group I introns and insertion elements. The group I characteristcs could be found in the 5 area of the genetic element, in the 3 area two open reading frames were located with high homologies to transposases of the IS605 family. Functional studies could proof the splicing activity of the ribozyme. CdISt1 could be found in several copies in all C. difficile strains examined so far. It was absent in other examined clostridial species. In all cases, the integration site in C. difficile was an open reading frame. Up to now, group I introns never were discovered in bacterial open reading frames. It can be assumed that the chimeric characteristics of the ribozyme permit an integration in bacterial open reading frames. The group I intron part would be responsible of the splicing activity, the IS element part could mediate the mobility of the genetic element. First experimental evidences point to a possible involvement of the chimeric ribozyme in the evolution of clostridial proteins, so the host C. difficile could benefit from its presence.
Resumo:
Das Hepatitis C Virus (HCV) ist ein umhülltes Virus aus der Familie der Flaviviridae. Es besitzt ein Plusstrang-RNA Genom von ca. 9600 Nukleotiden Länge, das nur ein kodierendes Leseraster besitzt. Das Genom wird am 5’ und 3’ Ende von nicht-translatierten Sequenzen (NTRs) flankiert, welche für die Translation und vermutlich auch Replikation von Bedeutung sind. Die 5’ NTR besitzt eine interne Ribosomeneintrittsstelle (IRES), die eine cap-unabhängige Translation des ca. 3000 Aminosäure langen viralen Polyproteins erlaubt. Dieses wird ko- und posttranslational von zellulären und viralen Proteasen in 10 funktionelle Komponenten gespalten. Inwieweit die 5’ NTR auch für die Replikation der HCV RNA benötigt wird, war zu Beginn der Arbeit nicht bekannt. Die 3’ NTR besitzt eine dreigeteilte Struktur, bestehend aus einer variablen Region, dem polyU/UC-Bereich und der sogenannten X-Sequenz, eine hochkonservierte 98 Nukleotide lange Region, die vermutlich für die RNA-Replikation und möglicherweise auch für die Translation benötigt wird. Die genuae Rolle der 3’ NTR für diese beiden Prozesse war zu Beginn der Arbeit jedoch nicht bekannt. Ziel der Dissertation war deshalb eine detaillierte genetische Untersuchung der NTRs hinsichtlich ihrer Bedeutung für die RNA-Translation und -Replikation. In die Analyse mit einbezogen wurden auch RNA-Strukturen innerhalb der kodierenden Region, die zwischen verschiedenen HCV-Genotypen hoch konserviert sind und die mit verschiedenen computer-basierten Modellen vorhergesagt wurden. Zur Kartierung der für RNA-Replikation benötigten Minimallänge der 5’ NTR wurde eine Reihe von Chimären hergestellt, in denen unterschiedlich lange Bereiche der HCV 5’ NTR 3’ terminal mit der IRES des Poliovirus fusioniert wurden. Mit diesem Ansatz konnten wir zeigen, dass die ersten 120 Nukleotide der HCV 5’ NTR als Minimaldomäne für Replikation ausreichen. Weiterhin ergab sich eine klare Korrelation zwischen der Länge der HCV 5’ NTR und der Replikationseffizienz. Mit steigender Länge der 5’ NTR nahm auch die Replikationseffizienz zu, die dann maximal war, wenn das vollständige 5’ Element mit der Poliovirus-IRES fusioniert wurde. Die hier gefundene Kopplung von Translation und Replikation in der HCV 5’ NTR könnte auf einen Mechanismus zur Regulation beider Funktionen hindeuten. Es konnte allerdings noch nicht geklärt werden, welche Bereiche innerhalb der Grenzen des IRES-Elements genau für die RNA-Replikation benötigt werden. Untersuchungen im Bereich der 3’ NTR ergaben, dass die variable Region für die Replikation entbehrlich, die X-Sequenz jedoch essentiell ist. Der polyU/UC-Bereich musste eine Länge von mindestens 11-30 Uridinen besitzen, wobei maximale Replikation ab einer Länge von 30-50 Uridinen beobachtet wurde. Die Addition von heterologen Sequenzen an das 3’ Ende der HCV-RNA führte zu einer starken Reduktion der Replikation. In den hier durchgeführten Untersuchungen zeigte keines der Elemente in der 3’ NTR einen signifikanten Einfluss auf die Translation. Ein weiteres cis aktives RNA-Element wurde im 3’ kodierenden Bereich für das NS5B Protein beschrieben. Wir fanden, dass Veränderungen dieser Struktur durch stille Punktmutationen die Replikation hemmten, welche durch die Insertion einer intakten Version dieses RNA-Elements in die variable Region der 3’ NTR wieder hergestellt werden konnte. Dieser Versuchsansatz erlaubte die genaue Untersuchung der für die Replikation kritischen Strukturelemente. Dadurch konnte gezeigt werden, dass die Struktur und die Primärsequenz der Loopbereiche essentiell sind. Darüber hinaus wurde eine Sequenzkomplementarität zwischen dem Element in der NS5B-kodierenden Region und einem RNA-Bereich in der X-Sequenz der 3’ NTR gefunden, die eine sog. „kissing loop“ Interaktion eingehen kann. Mit Hilfe von gezielten Mutationen konnten wir zeigen, dass diese RNA:RNA Interaktion zumindest transient stattfindet und für die Replikation des HCV essentiell ist.
Resumo:
Mitochondria are inherited maternally in most metazoans. However, in some bivalves, two mitochondrial lineages are present: one transmitted through eggs (F), the other through sperm (M). This is called Doubly Uniparental Inheritance (DUI). During male embryo development, spermatozoon mitochondria aggregate and end up in the primordial germ cells, while they are dispersed in female embryos. The molecular mechanisms of segregation patterns are still unknown. In the DUI species Ruditapes philippinarum, I examined sperm mitochondria distribution by MitoTracker, microtubule staining and TEM, and I localized germ line determinants with immunocytochemical analysis. I also analyzed the gonad transcriptome, searching for genes involved in reproduction and sex determination. Moreover, I analyzed an M-type specific open reading frame that could be responsible for maintenance/degradation of M mitochondria during embryo development. These transcripts were also localized in tissues using in situ hybridization. As in Mytilus, two distribution patterns of M mitochondria were detected in R. philippinarum, supporting that they are related to DUI. Moreover, the first division midbody concurs in positioning aggregated M mitochondria on the animal-vegetal axis of the male embryo: in organisms with spiral segmentation this zone is not involved in further cleavages, so aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area where germ plasm is transferred, suggesting their contribution in male germ line formation. The finding of reproduction and ubiquitination transcripts led to formulate a model in which ubiquitination genes stored in female oocytes during gametogenesis would activate sex-gene expression in the early embryonic developmental stages (preformation). Only gametogenetic cells were labeled by in situ hybridization, proving their specific transcription in developing gametes. Other than having a role in sex determination, some ubiquination factors could also be involved in mitochondrial inheritance, and their differential expression could be responsible for the different fate of sperm mitochondria in the two sexes.
Resumo:
During the last twenty years, Cydia pomonolla granulovirus (CpGV, Baculoviridae) has become the most important biological control agent for the codling moth (CM) in organic and integrated apple production. All registered products in Europe are based on the isolate CpGV-M, which was discovered 1964 in Mexico. A serious threat to future application of CpGV is the occurrence of CM field populations resistant to CpGV. Since 2003, populations with up to 10,000-fold reduced susceptibility were reported from orchards in Germany, France, Italy, Switzerland, Austria and the Netherlands. A putative alternative to CpGV-M are novel CpGV isolates which are able to overcome CM resistance. This thesis focuses on the identification and characterisation of resistance overcoming CpGV isolates and the analysis of their molecular difference to CpGV-M.rnSixteen CpGV isolates were tested against CM lab strains in bioassays. Hereby, five isolates were identified which were able to completely overcome resistance. The genomes of these isolates were compared to CpGV-M by restriction fragment length polymorphism (RFLP) analysis. To identify the molecular factor responsible for improved virulence of some CpGV isolates, major genomic differences were sequenced and analysed. A 0.7 kb insertion was found in CpGV-I01, -I12 and -E2, but not in other resistance overcoming isolates. Analysis of the insertions sequence revealed that it might be due to a transposition event, but not involved in overcoming resistance. rnFor unequivocal identification of CpGV isolates, a new method based on molecular analysis was established. Partial sequencing of the conserved polyhedrin/granulin (polh/gran), late expression factor-8 (lef-8) and late expression factor-9 (lef-9) genes revealed single nucleotide polymorphisms (SNPs). SNP analysis correlated with the grouping obtained by RFLP analysis. A phylogenetic classification due to different genome types A-E is proposed. Phylogenetic analysis suggested that CpGV-M was the phylogenetically youngest of the tested CpGV isolates.rnWhole genome sequencing of two resistance overcoming isolates CpGV-I12 (type D genome) and -S (type E genome) and CpGV-M (type A genome) was performed. Comparison of the three genomes revealed a high sequence identity. Several insertions and deletions ranging from 1-700 nucleotides (nt) were found. Comparison on open reading frame (ORF) level revealed that CpGV-I12 and -S shared only one protein alteration when compared to CpGV-M: a stretch of 24 nt present in ORF cp24 was not found in any of the resistance overcoming isolates. Cp24 codes for the early gene pe38. Combined with the results of phylogenetic analysis, it is proposed that these 24 nt are a recent insertion into the CpGV-M genome. The role of pe38 in overcoming resistance was investigated by knocking out pe38 of a CpGV-M based bacmid and swapping of CpGV-I12 pe38 of into the k.o. bacmid. When pe38 of CpGV-I12 was inserted into the k.o. bacmid, the infectivity could not be rescued, suggesting that the genomic portion of pe38 might play a role in its function.rnIt can be concluded that the recently observed CpGV resistance in CM is only related to type A genomes. RFLP and SNP analysis provide tools for identifying and characterising different CpGV isolates reliably, a pre-condition for a future registration of CpGV products based on novel CpGV isolates.rnrnrn
Resumo:
In idiopathic portal hypertension (IPH) typical vascular lesions are present in the branches of the portal vein or in the perisinusoidal area of the liver. Similar histological alterations have been reported in the pulmonary vasculature of patients with idiopathic pulmonary artery hypertension (IPAH). As IPAH is associated with mutations of the bone morphogenetic protein receptor 2 (BMPR2) gene, the aim of this study was to investigate whether this association might also be found in patients with IPH. Twenty-three samples belonging to 21 unrelated caucasian patients with IPH followed in the hepatic haemodynamic laboratory of the Hospital Clinic in Barcelona were included in the study. All patients were studied for the entire open reading frame and splice site of the BMPR2 gene by direct sequencing and multiple ligation probe amplification (MLPA) in order to detect large deletions/duplications. None of the 23 patients had pulmonary artery hypertension. Four patients presented one single nucleotide polymorphism (SNP) in intron 5, four patients had a SNP in exon 12 and a SNP in exon 1 was found in two cases. Two patients had both intron 5 and exon 12 polymorphisms. All SNPs were previously described. Except for these three SNPs, neither mutations nor rearrangements have been identified in the BMPR2 gene in this population. We did not detect mutations or rearrangements in the coding region of the BMPR2 gene in our patients with IPH. These findings suggest that, in contrast to IPAH, mutations in BMPR2 are not involved in the pathogenesis of IPH.
Resumo:
The human gene deleted in malignant brain tumors 1 (DMBT1) is considered to play a role in tumorigenesis and pathogen defense. It encodes a protein with multiple scavenger receptor cysteine-rich (SRCR) domains, which are involved in recognition and binding of a broad spectrum of bacterial pathogens. The SRCR domains are encoded by highly homologous repetitive exons, whose number in humans may vary from 8 to 13 due to genetic polymorphism. Here, we characterized the porcine DMBT1 gene on the mRNA and genomic level. We assembled a 4.5 kb porcine DMBT1 cDNA sequence from RT-PCR amplified seminal vesicle RNA. The porcine DMBT1 cDNA contains an open reading frame of 4050 nt. The transcript gives rise to a putative polypeptide of 1349 amino acids with a calculated mass of 147.9 kDa. Compared to human DMBT1, it contains only four N-terminal SRCR domains. Northern blotting revealed transcripts of approximately 4.7 kb in size in the tissues analyzed. Analysis of ESTs suggested the existence of secreted and transmembrane variants. The porcine DMBT1 gene spans about 54 kb on chromosome 14q28-q29. In contrast to the characterized cDNA, the genomic BAC clone only contained 3 exons coding for N-terminal SRCR domains. In different mammalian DMBT1 orthologs large interspecific differences in the number of SRCR exons and utilization of the transmembrane exon exist. Our data suggest that the porcine DMBT1 gene may share with the human DMBT1 gene additional intraspecific variations in the number of SRCR-coding exons.
Resumo:
The gene for agouti signaling protein (ASIP) is centrally involved in the expression of coat color traits in animals. The Mangalitza pig breed is characterized by a black-and-tan phenotype with black dorsal pigmentation and yellow or white ventral pigmentation. We investigated a Mangalitza x Piétrain cross and observed a coat color segregation pattern in the F2 generation that can be explained by virtue of two alleles at the MC1R locus and two alleles at the ASIP locus. Complete linkage of the black-and-tan phenotype to microsatellite alleles at the ASIP locus on SSC 17q21 was observed. Corroborated by the knowledge of similar mouse coat color mutants, it seems therefore conceivable that the black-and-tan pigmentation of Mangalitza pigs is caused by an ASIP allele a(t), which is recessive to the wild-type allele A. Toward positional cloning of the a(t) mutation, a 200-kb genomic BAC/PAC contig of this chromosomal region has been constructed and subsequently sequenced. Full-length ASIP cDNAs obtained by RACE differed in their 5' untranslated regions, whereas they shared a common open reading frame. Comparative sequencing of all ASIP exons and ASIP cDNAs between Mangalitza and Piétrain pigs did not reveal any differences associated with the coat color phenotype. Relative qRT-PCR analyses showed different dorsoventral skin expression intensities of the five ASIP transcripts in black-and-tan Mangalitza. The a(t) mutation is therefore probably a regulatory ASIP mutation that alters its dorsoventral expression pattern.
Resumo:
We have cloned the platelet collagen receptor glycoprotein (GP) VI from a human bone marrow cDNA library using rapid amplification of cDNA ends with platelet mRNA to complete the 5' end sequence. GPVI was isolated from platelets using affinity chromatography on the snake C-type lectin, convulxin, as a critical step. Internal peptide sequences were obtained, and degenerate primers were designed to amplify a fragment of the GPVI cDNA, which was then used as a probe to screen the library. Purified GPVI, as well as Fab fragments of polyclonal antibodies made against the receptor, inhibited collagen-induced platelet aggregation. The GPVI receptor cDNA has an open reading frame of 1017 base pairs coding for a protein of 339 amino acids including a putative 23-amino acid signal sequence and a 19-amino acid transmembrane domain between residues 247 and 265. GPVI belongs to the immunoglobulin superfamily, and its sequence is closely related to FcalphaR and to the natural killer receptors. Its extracellular chain has two Ig-C2-like domains formed by disulfide bridges. An arginine residue is found in position 3 of the transmembrane portion, which should permit association with Fcgamma and its immunoreceptor tyrosine-based activation motif via a salt bridge. With 51 amino acids, the cytoplasmic tail is relatively long and shows little homology to the C-terminal part of the other family members. The ability of the cloned GPVI cDNA to code for a functional platelet collagen receptor was demonstrated in the megakaryocytic cell line Dami. Dami cells transfected with GPVI cDNA mobilized intracellular Ca(2+) in response to collagen, unlike the nontransfected or mock transfected Dami cells, which do not respond to collagen.
Resumo:
Here we present the identification and cloning of the NcBSR4 gene, the putative Neospora caninum orthologue to the Toxoplasma gondii TgBSR4 gene. To isolate NcBSR4, genome walking PCR was performed on N. caninum genomic DNA using the expressed sequence tag NcEST3c28h02.y1 sequence, which shares a 44% identity with the TgBSR4 gene, as a framework. Nucleotide sequencing of amplified DNA fragments revealed a single uninterrupted 1227 bp open reading frame that encodes a protein of 408 amino acids with 66% similarity to the TgBSR4 antigen. A putative 39-residue signal peptide was found at the NH2-terminus, followed by a hydrophilic region. At the COOH-terminus, a potential site for a glycosylphosphatidylinositol anchor was identified at amino acid 379. A polyclonal serum against recombinant NcBSR4 protein was raised in rabbits, and immunolabelling demonstrated stage-specific expression of the NcBSR4 antigen in N. caninum bradyzoites produced in vitro and in vivo. Furthermore, RT-PCR analysis showed a slight increase of NcBSR4 transcripts in bradyzoites generated during in vitro tachyzoite-to-bradyzoite stage-conversion, suggesting that this gene is specifically expressed at the bradyzoite stage and that its transcription relies on the switch to this stage.
Resumo:
PURPOSE: The goal of this study was to identify mutations in X-chromosomal genes associated with retinitis pigmentosa (RP) in patients from Germany, The Netherlands, Denmark, and Switzerland. METHODS: In addition to all coding exons of RP2, exons 1 through 15, 9a, ORF15, 15a and 15b of RPGR were screened for mutations. PCR products were amplified from genomic DNA extracted from blood samples and analyzed by direct sequencing. In one family with apparently dominant inheritance of RP, linkage analysis identified an interval on the X chromosome containing RPGR, and mutation screening revealed a pathogenic variant in this gene. Patients of this family were examined clinically and by X-inactivation studies. RESULTS: This study included 141 RP families with possible X-chromosomal inheritance. In total, we identified 46 families with pathogenic sequence alterations in RPGR and RP2, of which 17 mutations have not been described previously. Two of the novel mutations represent the most 3'-terminal pathogenic sequence variants in RPGR and RP2 reported to date. In exon ORF15 of RPGR, we found eight novel and 14 known mutations. All lead to a disruption of open reading frame. Of the families with suggested X-chromosomal inheritance, 35% showed mutations in ORF15. In addition, we found five novel mutations in other exons of RPGR and four in RP2. Deletions in ORF15 of RPGR were identified in three families in which female carriers showed variable manifestation of the phenotype. Furthermore, an ORF15 mutation was found in an RP patient who additionally carries a 6.4 kbp deletion downstream of the coding region of exon ORF15. We did not identify mutations in 39 sporadic male cases from Switzerland. CONCLUSIONS: RPGR mutations were confirmed to be the most frequent cause of RP in families with an X-chromosomal inheritance pattern. We propose a screening strategy to provide molecular diagnostics in these families.
Resumo:
All mitochondria have integral outer membrane proteins with beta-barrel structures including the conserved metabolite transporter VDAC (voltage dependent anion channel) and the conserved protein import channel Tom40. Bioinformatic searches of the Trypanosoma brucei genome for either VDAC or Tom40 identified a single open reading frame, with sequence analysis suggesting that VDACs and Tom40s are ancestrally related and should be grouped into the same protein family: the mitochondrial porins. The single T. brucei mitochondrial porin is essential only under growth conditions that depend on oxidative phosphorylation. Mitochondria isolated from homozygous knockout cells did not produce adenosine-triphosphate (ATP) in response to added substrates, but ATP production was restored by physical disruption of the outer membrane. These results demonstrate that the mitochondrial porin identified in T. brucei is the main metabolite channel in the outer membrane and therefore the functional orthologue of VDAC. No distinct Tom40 was identified in T. brucei. In addition to mitochondrial proteins, T. brucei imports all mitochondrial tRNAs from the cytosol. Isolated mitochondria from the VDAC knockout cells import tRNA as efficiently as wild-type. Thus, unlike the scenario in plants, VDAC is not required for mitochondrial tRNA import in T. brucei.