953 resultados para Simulator of Human Intestinal Microbial Ecosystem (SHIME)
Resumo:
As disparities in wealth levels between and within countries become greater many poor people migrate in search of better earning opportunities. Some of this migration is legal but, in many cases, the difficulties involved in securing the necessary documentation mean that would-be migrants resort to illegal methods. This, in turn, makes them vulnerable to human trafficking, a phenomenon that has received growing attention from NGOs, governments and the media in recent years. Despite the attention being given to human trafficking, however, there remains a certain amount of confusion over what exactly it entails though it is generally understood to refer to the transportation and subsequent exploitation of vulnerable people through means of force or deception. The increased attention that has been given to the issue of human trafficking over the last decade has resulted in new discourses emerging which attempt to explain what human trafficking entails, what the root causes of the phenomenon are and how best to tackle the problem. While a certain degree of conceptual clarity has been attained since human trafficking rose to prominence in the 1990s, it could be argued that human trafficking remains a poorly defined concept and that there is frequently confusion concerning the difference between it and related concepts such as people smuggling, migration and prostitution. The thesis examines the ways in which human trafficking has been conceptualised or framed in a specific national context- that of Lao PDR. Attention is given to the task of locating the major frames within which the issue has been situated, as well as considering the diagnoses and prognoses that the various approaches to trafficking suggest. The research considers which particular strands of trafficking discourse have become dominant in Lao PDR and the effect this has had on the kinds of trafficking interventions that have been undertaken in the country. The research is mainly qualitative and consists of an analysis of key texts found in the Lao trafficking discourse.
Resumo:
Human papillomaviruses (HPVs) are the causal agents of cervical cancer, which is the second most common cancer among women worldwide. Cellular transformation and carcinogenesis depend on the activities of viral E5, E6 and E7 proteins. Alterations in cell-cell contacts and in communication between epithelial cells take place during cervical carcinogenesis, leading to changes in cell morphology, increased cell motility and finally invasion. The aim of this thesis was to study genome-wide effects of the HPV type 16 (HPV-16) E5 protein on the expression of host cell messenger RNAs (mRNAs) and microRNAs by applying microarray technology. The results showed that the HPV-16 E5 protein alters several cellular pathways involved in cellular adhesion, motility and proliferation as well as in the extracellular matrix. The E5 protein was observed to enhance wound healing of epithelial cell monolayers by increasing cell motility in vivo. HPV-16 E5-induced alterations in the expression of cellular microRNAs and their target genes seem to favour increased proliferation and tumorigenesis. E5 was also shown to affect the expression of adherens junction proteins in HaCaT epithelial keratinocytes. In addition, a study of a membrane cytoskeletal cross-linker protein, ezrin, revealed that when activated, it localizes to adherens junctions. The results suggest that ezrin distribution to forming adherens junctions is due to Rac1 activity in epithelial cells. These studies reveal for the first time the holistic effects of HPV-16 E5 protein in promoting precancerous events in epithelial cells. The results contribute to identifyinging novel markers for cervical precancerous stages and to predicting disease behaviour.
Resumo:
Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-kappa B signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.
Resumo:
Ability of the beta-subunit of human chorionic gonadotropin to inhibit the response to lutropin (luteinizing hormone, LH) was tested in the immature rat ovarian system and pregnant-mare-serum-gonadotropin-primed rat ovarian system with progesterone production being used as the response. Human chorionic gonadotropin beta-subunit was found to inhibit human and ovine lutropin-stimulated progesterone production. At a constant dose of lutropin, inhibition was dependent on the concentration of beta-subunit. When concentration of the beta-subunit was kept constant at 5.0 microgram/ml and the concentration of lutropin was varied, the inhibition was maximum at the saturating concentration of the native hormone. The alpha-subunit of the human chorionic gonadotropin did not inhibit the response to lutropin. The lutropin/beta-subunit ratio required to produce an inhibition of response was much lower than that required to bring about an observable inhibition of binding.
Resumo:
Prostate cancer is one of the most prevalent cancer types in men. The development of prostate tumors is known to require androgen exposure, and several pathways governing cell growth are deregulated in prostate tumorigenesis. Recent genetic studies have revealed that complex gene fusions and copy - number alterations are frequent in prostate cancer, a unique feature among solid tumors. These chromosomal aberrations are though to arise as a consequence of faulty repair of DNA double strand breaks (DSB). Most repair mechanisms have been studied in detail in cancer cell lines, but how DNA damage is detected and repaired in normal differentiated human cells has not been widely addressed. The events leading to the gene fusions in prostate cancer are under rigorous studies, as they not only shed light on the basic pathobiologic mechanisms but may also produce molecular targets for prostate cancer treatment and prevention. Prostate and seminal vesicles are part of the male reproductive system. They share similar structure and function but differ dramatically in their cancer incidence. Approximately fifty primary seminal vesicle carcinomas have been reported worldwide. Surprisingly, only little is known on why seminal vesicles are resistant to neoplastic changes. As both tissues are androgen dependent, it is a mystery that androgen signaling would only lead to tumors in prostate tissue. In this work, we set up novel ex vivo human tissue culture models of prostate and seminal vesicles, and used them to study how DNA damage is recognized in normal epithelium. One of the major DNA - damage inducible pathways, mediated by the ATM kinase, was robustly activated in all main cell types of both tissues. Interestingly, we discovered that secretory epithelial cells had less histone variant H2A.X and after DNA damage lower levels of H2AX were phosphorylated on serine 139 (γH2AX) than in basal or stromal cells. γH2AX has been considered essential for efficient DSB repair, but as there were no significant differences in the γH2AX levels between the two tissues, it seems more likely that the role of γH2AX is less important in postmitotic cells. We also gained insight into the regulation of p53, an important transcription factor that protects genomic integrity via multiple mechanisms, in human tissues. DSBs did not lead to a pronounced activation of p53, but treatments causing transcriptional stress, on the other hand, were able to launch a notable p53 response in both tissue types. In general, ex vivo culturing of human tissues provided unique means to study differentiated cells in their relevant tissue context, and is suited for testing novel therapeutic drugs before clinical trials. In order to study how prostate and seminal vesicle epithelial cells are able to activate DNA damage induced cell cycle checkpoints, we used primary cultures of prostate and seminal vesicle epithelial cells. To our knowledge, we are the first to report isolation of human primary seminal vesicle cells. Surprisingly, human prostate epithelial cells did not activate cell cycle checkpoints after DSBs in part due to low levels of Wee1A, a kinase regulating CDK activity, while primary seminal vesicle epithelial cells possessed proficient cell cycle checkpoints and expressed high levels of Wee1A. Similarly, seminal vesicle cells showed a distinct activation of the p53 - pathway after DSBs that did not occur in prostate epithelial cells. This indicates that p53 protein function is under different control mechanisms in the two cell types, which together with proficient cell cycle checkpoints may be crucial in protecting seminal vesicles from endogenous and exogenous DNA damaging factors and, as a consequence, from carcinogenesis. These data indicate that two very similar organs of male reproductive system do not respond to DNA damage similarly. The differentiated, non - replicating cells of both tissues were able to recognize DSBs, but under proliferation human prostate epithelial cells had deficient activation of the DNA damage response. This suggests that prostate epithelium is most vulnerable to accumulating genomic aberrations under conditions where it needs to proliferate, for example after inflammatory cellular damage.
Resumo:
Monoclonal antibodies raised against human serum retinol-binding protein (hRBP) were used as probes for the study of the antigenic determinants of hRBP and those shared with the same protein from other species. The antibodies could be classified into four distinct groups and react with the homologous proteins from the rat as well as the rabbit sera. Three of these antibodies recognize sequential or continuous epitopes while the remaining antibody is directed against a discontinuous or conformational epitope. By chemical cleavage with cyanogen bromide, the domains recognized by the monoclonal antibodies could be delineated. By solid-phase synthetic approach, the core sequences recognized by two of these monoclonal antibodies were identified to amino acid sequences 45–51 and 128–131 of the primary amino acid sequence of hRBP.
Resumo:
Inhibition of aromatase, a key enzyme in the biosynthesis of oestradiol-17 beta, by the addition of 1,4,6-androstatrien-3,17-dione resulted in a significant increase in the levels of immunoreactive human chorionic gonadotrophin (hCG) in the medium and tissue. This increase was partially reversed by the simultaneous addition of oestradiol-17 beta. These effects on the levels of immunoreactive hCG were also reflected by the increased levels of mRNA specific for the alpha and beta subunits of hCG following the addition of the aromatase inhibitor. However, addition of tamoxifen resulted in a drastic decrease in the levels of both the messages. Based on these results, it is suggested that the synthesis of hCG is negatively modulated by oestradiol-17 beta in the human placenta.
Serotypic and genotypic characterization of human serotype 10 rotaviruses from asymptomatic neonates
Resumo:
Human rotaviruses were isolated from asymptomatic neonates at various hospitals and clinics in the city of Bangalore, India, and were found to be subgroup I specific and possess long RNA patterns (M. Sukumaran, K. Gowda, P. P. Maiya, T. P. Srinivas, M. S. Kumar, S. Aijaz, R. R. Reddy, L. Padilla, H. B. Greenberg, and C. D. Rao, Arch. Virol. 126:239-251, 1992). Three of these strains were adapted to tissue culture and found by serotype analysis and neutralization assays to be of serotype 10, a serotype commonly found in cattle but infrequently found in humans and not previously identified in neonates. By RNA-RNA hybridization, a high level of relatedness to a serotype 10 bovine rotavirus strain and a low-to-medium level of relatedness to a human rotavirus strain were observed. Since this human isolate shares a genogroup with bovine rotavirus, it is likely that it originated by interspecies transmission. A human rotavirus strain isolated from asymptomatic neonates and similar to bovine rotavirus might represent a good vaccine candidate.
Resumo:
Telomeric DNA of a variety of vertebrates including humans contains the tandem repeat d(TTAGGG)(n). We have investigated the structural properties of the human telomeric repeat oligonucleotide models d(T(2)AG(3))(4), d(G(3)T(2)A)(3)G(3), and d(G(3)T(2)AG(3)) using CD, gel electrophoresis, and chemical probing techniques. The sequences d(G(3)T(2)A)(3)G(3) and d(T(2)AG(3))(4) assume an antiparallel G quartet structure by intramolecular folding, while the sequence d(G(3)T(2)AG(3)) also adopts an antiparallel G quartet structure but by dimerization of hairpins. In all the above cases, adenines are in the loop. The TTA loops are oriented at the same end of the G tetrad stem in the case of hairpin dimer. Further, the oligonucleotide D(G(3)T(2)AG(3)) forms a higher order structure by the association of two hairpin dimers via stacking of G tetrad planes. Here we show that N-7 of adenine in the hairpin dimer is Hoogsteen hydrogen-bonded. The partial reactivity of loop adenines with DEPC in d(T(2)AG(3))(4) suggests that the intramolecular G quartet structure is highly polymorphic and structures with different loop orientations and topologies are formed in solution. Intra- and interloop hydrogen bonding schemes for the TTA loops are proposed to account for the observed diethyl pyrocarbonate reactivities of adenines. Sodium-induced G quartet structures differ from their potassium-induced counterparts not only in stability but also in loop conformation and interactions. Thus, the overall structure and stability of telomeric sequences are modulated by the cation present, loop sequence, and the number of G tracts, which might be important for the telomere function.
Resumo:
Monoclonal antibodies (MAbs) have been used extensively for identification of sequence-specific epitopes using either the ELISA or/and IRMA methods, However, attempts to use MAbs for identification of conformation-specific epitopes have been very few as they are considered very labile. We have investigated the stability of conformation-specific epitopes of human chorionic gonadotropin (hCG) using a quantitative solid-phase radioimmnunoassay (SPRIA) technique. Several epitopes are stable to mild modification (chemical and proteolytic) conditions, and epitopes show differential stability for these modifications. Based on these observations, a monoclonal antibody (MAb 16) for an a-subunit-specific epitope of hCG has been used to monitor changes at the epitopic site (identified as epitope 16) on modification of hCG, using SPRIA with immobilized MAb 16. Modifications of amino groups, hydroxyl group of tyrosine as well as carboxyl group of Asp/Glu all bring about sufficient changes in the epitope integrity. Peptide bond hydrolysis at lysine residues damages the epitope, but not at arginine residues, Hydrolysis at tyrosine does not affect the epitope, though modification of the side-chain of tyrosine inactivates the epitope. Destruction of the epitope occurs on reduction of the disulphide bonds. Partial retention of the epitope activity is seen on modification of carboxyl or the epsilon-amino groups of lysine. Based on these results four to six amino acids have been identified to be at the epitopic site, and the data suggest that two peptide segments are brought together by the disulphide bond Cys10-Cys60 to form the epitope.
Resumo:
Identification of conformation-specific epitopes of hCG beta has been done using a simple batch method, Chemically or enzymatically-modified hCG beta has been prepared in a batch and the effect of modifications on the integrity of different epitope regions has been investigated in a quantitative manner using monoclonal antibodies (MAbs) immobilized on plastic tubes from culture supernatants. Based on the extent of damage done to different regions by different modifications, three conformation-specific epitopes of hCG beta have been identified. The method has been shown to have important advantages over the existing methods on many considerations, Using this approach, these epitopes have been shown to be at/near the receptor-binding region.