995 resultados para Shoemaker, Nathan.
Resumo:
In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis.
Resumo:
Aims Corneal nerve morphology and corneal sensation threshold have recently been explored as potential surrogate markers for the evaluation of diabetic neuropathy. We present the baseline findings of the ‘Longitudinal Assessment of Neuropathy in type 1 Diabetes using novel ophthalmic Markers’(LANDMark) study. Methods The LANDMark study is a 4-year, two-site, natural history study of three participant groups: type 1 diabetes with neuropathy (T1W), type 1 diabetes without neuropathy (T1WO) and control participants without diabetes or neuropathy. All participants undergo a detailed annual assessment of neuropathy including corneal nerve parameters measured using corneal confocal microscopy and corneal sensitivity measured using non-contact corneal aesthesiometry. Results 76 T1W, 166 T1WO and 154 control participants were enrolled into the study. Corneal sensation threshold (mbars) was significantly higher (i.e. sensitivity was lower) in T1W (1.0 ± 1.1) than T1WO (0.7 ± 0.7) and controls (0.6 ± 0.4) (p < 0.001), with no difference between T1WO and controls. Corneal nerve fibre length was lower in T1W (14.0 ± 6.4 mm/mm2) compared to T1WO (19.1 ± 5.8 mm/mm2) and controls (23.2 ± 6.3 mm/mm2) (p < 0.001). Corneal nerve fibre length was lower in T1WO compared to controls. Conclusions The LANDMark baseline findings confirm a reduction in corneal sensitivity only in Type 1 patients with neuropathy. However, corneal nerve fibre length is reduced even in Type 1 patients without neuropathy with an even greater deficit in Type 1 patients with neuropathy.
Resumo:
AIMS: Recent studies on corneal markers have advocated corneal nerve fibre length as the most important measure of diabetic peripheral neuropathy. The aim of this study was to determine if standardizing corneal nerve fibre length for tortuosity increases its association with other measures of diabetic peripheral neuropathy. METHODS: Two hundred and thirty-one individuals with diabetes with either predominantly mild or absent neuropathic changes and 61 control subjects underwent evaluation of diabetic neuropathy symptom score, neuropathy disability score, testing with 10-g monofilament, quantitative sensory testing (warm, cold, vibration detection) and nerve conduction studies. Corneal nerve fibre length and corneal nerve fibre tortuosity were measured using corneal confocal microscopy. A tortuosity-standardised corneal nerve fibre length variable was generated by dividing corneal nerve fibre length by corneal nerve fibre tortuosity. Differences in corneal nerve morphology between individuals with and without diabetic peripheral neuropathy and control subjects were determined and associations were estimated between corneal morphology and established tests of, and risk factors for, diabetic peripheral neuropathy. RESULTS: The tortuosity-standardised corneal nerve fibre length variable was better than corneal nerve fibre length in demonstrating differences between individuals with diabetes, with and without neuropathy (tortuosity-standardised corneal nerve fibre length variable: 70.5 ± 27.3 vs. 84.9 ± 28.7, P < 0.001, receiver operating characteristic area under the curve = 0.67; corneal nerve fibre length: 15.9 ± 6.9 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.004, receiver operating characteristic area under the curve = 0.64). Furthermore, the tortuosity-standardised corneal nerve fibre length variable demonstrated a significant difference between the control subjects and individuals with diabetes, without neuropathy, while corneal nerve fibre length did not (tortuosity-standardised corneal nerve fibre length variable: 94.3 ± 27.1 vs. 84.9 ± 28.7, P = 0.028; corneal nerve fibre length: 20.1 ± 6.3 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.084). Correlations between corneal nerve fibre length and established measures of neuropathy and risk factors for neuropathy were higher when a correction was made for the nerve tortuosity. CONCLUSIONS: Standardizing corneal nerve fibre length for tortuosity enhances the ability to differentiate individuals with diabetes, with and without neuropathy.
Resumo:
Parsons' Diseases of the Eye, first published in 1907, is one of the foundation texts of modern ophthalmology. It has seen a new edition at approximately 5-year intervals throughout the century. This latest edition incorporates developments that have taken place within the specialty since the 1984 impression, but remains in a virtually unchanged format...
Resumo:
Before returning from Australia for the BCLA's Pioneers Day, Professor Nathan Efron spoke to OT. Professor Efron, you’re back in the UK for a short while – What tempted you away from Australia’s summer and back to Britain in November...
Resumo:
There are probably two main reasons why some practitioners do not bother fitting contact lenses – that it is not profitable and it is clinically too difficult. Although this article will concentrate on clinical issues rather than questions of profitability, I feel that the belief that contact lens fitting is not as profitable as prescribing spectacles is unfounded.
Resumo:
Current contact lens prescribing data speaks for itself: GP lenses represented 5 percent or less of fits in 13 of the 27 countries examined in the February 2009 article "International Contact Lens Prescribing in 2008" by Morgan et al. GP lens fitting is becoming a specialist activity undertaken by a minority of practitioners. I believe the question is no longer: "Are GP lenses on the decline?" but rather: "Why are GP lenses on the decline?" So, here I'll try to answer the latter question.
Resumo:
This book had to be written. Congratulations to British dispensing optician Timothy Bowden for his dogged determination in researching, writing and essentially self-publishing this hefty tome. How does one tackle the monumental task of tracking the complex history of the development of the contact lens, from the production of the first human artificial glass eyes by Ludwig Müller-Uri in Germany in 1835 to the sophisticated, high-technology, multi-billion dollar contact lens industry of today? The superficial answer may seem simple: do it chronologically, but it is much more difficult than that. Multiple contemporaneous and seemingly unconnected events often converged to result in ideas that elevated contact lens technology to the next level and many developments revolved around the deliberate and sometimes accidental activities of a long list of enthusiasts, inventors, entrepreneurs, businessmen, technicians, scientists, engineers, polymer scientists, opticians, optometrists and ophthalmologists.
Resumo:
This is the eighth consecutive year that we have presented data from a survey of international contact lens prescribing in Contact Lens Spectrum. In this article we report on an assessment of 25,801 fits across 28 contact lens markets located in North America, Europe, the Middle East, Asia, and Africa. As in previous years, we opted for a prospective approach to this work. Up to 1,000 survey forms were randomly disseminated in each market to contact lens practitioners (ophthalmologists, optometrists, and/or opticians depending on the market), and information about the first 10 patients prescribed with lenses after receipt of paper or electronic survey forms was anonymously recorded.
Resumo:
The results of the annual survey on international contact lens fits have become available again, which presents a great opportunity to distill the RGP lens data to see what the status of RGP lenses is today as well as to revisit the last decade of RGP lens fitting and to look ahead to the next decade.