1000 resultados para Ship resistance.
Resumo:
In this article, we describe and compare two individual-based models constructed to investigate how genetic factors influence the development of phosphine resistance in lesser grain borer (R. dominica). One model is based on the simplifying assumption that resistance is conferred by alleles at a single locus, while the other is based on the more realistic assumption that resistance is conferred by alleles at two separate loci. We simulated the population dynamic of R. dominica in the absence of phosphine fumigation, and under high and low dose phosphine treatments, and found important differences between the predictions of the two models in all three cases. In the absence of fumigation, starting from the same initial frequencies of genotypes, the two models tended to different stable frequencies, although both reached Hardy-Weinberg equilibrium. The one-locus model exaggerated the equilibrium proportion of strongly resistant beetles by 3.6 times, compared to the aggregated predictions of the two-locus model. Under a low dose treatment the one-locus model overestimated the proportion of strongly resistant individuals within the population and underestimated the total population numbers compared to the two-locus model. These results show the importance of basing resistance evolution models on realistic genetics and that using oversimplified one-locus models to develop pest control strategies runs the risk of not correctly identifying tactics to minimise the incidence of pest infestation.
Resumo:
BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
On January 6, 1938 our family left Nazi Germany and boarded a ship "Deutschland" for New York. This ended our family's life in Germany forever. Rudolph ES Mathias.
Resumo:
Digital Image
Resumo:
Pseudocercospora macadamiae Beilharz, Mayers and Pascoe infects macadamia fruit via stomata causing husk spot disease. Information on the variability of fruit stomatal abundance, its association with diseased fruit pericarps (sticktights) that are retained in the tree canopy, and its influence on the husk spot intensity (incidence, severity and lesion number) among macadamia genotypes is lacking. We examined a total of 230 macadamia trees comprising 19 cultivars, 56 wild germplasm accessions and 40 breeding progeny, for the prevalence of sticktights and husk spot intensity over three production seasons. We observed a strong association between the prevalence of sticktights and disease intensity indicating its usefulness as a predictor of husk spot and as a useful phenotypic trait for husk spot resistance selection in breeding programmes. Similarly, stomatal abundance varied among macadamia genotypes, and a significant linear relationship (P < 0.001; 93%) was observed between fruit stomatal abundance and husk spot for all the macadamia genotypes analysed, confirming the utility of that trait for disease resistance screening. The genotypes were grouped into disease resistance groups. Correlations between fruit stomatal abundance, disease intensity and prevalence of sticktights revealed that the numbers of sticktights, and relative stomatal abundance were the main factors influencing the intensity of husk spot among macadamia genotypes. This is the first comprehensive study of natural variation of stomatal abundance in Macadamia species that reveals genetic variation, and provides relevant relationships with disease intensity and the prevalence of sticktights. The phenotypic plant traits indentified in this study may serve as selection tools for disease resistance screening in macadamia breeding programmes.
Resumo:
Rph20 is the only reported, simply inherited gene conferring moderate to high levels of adult plant resistance (APR) to leaf rust (Puccinia hordei Otth) in barley (Hordeum vulgare L.). Key parental genotypes were examined to determine the origin of Rph20 in two-rowed barley. The Dutch cultivar 'Vada' (released in the 1950s) and parents, 'Hordeum laevigatum' and 'Gull' ('Gold'), along with the related cultivar 'Emir' (a derivative of 'Delta'), were assessed for APR to P. hordei in a disease screening nursery. The marker bPb-0837-PCR, co-located with Rph20 on the short arm of chromosome 5H (5HS), was used to screen genotypes for the resistance allele, Rph20.ai. Results from phenotypic assessment and DNA analysis confirmed that Rph20 originated from the landrace 'H. laevigatum' (i.e., Hordeum vulgare subsp. vulgare). Tracing back this gene through the pedigrees of two-rowed barley cultivars, indicated that Rph20 has contributed APR to P. hordei for more than 60 years. Although there have been no reports of an Rph20-virulent pathotype, the search for alternative sources of APR should continue to avoid widespread reliance upon a single resistance factor.
Resumo:
Genomic regions influencing resistance to powdery mildew [Blumeria graminis (DC.) E.O. Speer f. sp. hordei Em. Marchal] were detected in a doubled haploid (DH) barley (Hordeum vulgare L.) population derived from a cross between the breeding line ND24260 and cultivar Flagship when evaluated across four field environments in Australia and Uruguay. Significant quantitative trait loci (OIL) for resistance to B. graminis were detected on six of the seven chromosomes (1H, 2H, 3H, 4H, 5H, and 7H). A QTL with large effect donated by ND24260 mapped to the short arm of chromosome 1H (1 HS) conferring near immunity to B. graminis in Australia but was ineffective in Uruguay. Three OIL donated by Flagship contributed partial resistance to B. graminis and were detected in at least two environments. These OIL were mapped to chromosomes 3H, 4H, and 5H (5HS) accounting for up to 18.6, 3.4, and 8.8% phenotypic variation, respectively. The 5HS QTL contributed partial resistance to B. graminis in all field environments in both Australia and Uruguay and aligned with the genomic region of Rph20, a gene conferring adult plant resistance (APR) to leaf rust (Puccinia hordei Otth), which is found in some cultivars having Vada' or 'Emir' in their parentage. Selection for favorable marker haplotypes within the 3H, 4H, and 5H QTL regions can be performed even in the presence of single (major) gene resistance. Pyramiding such QTL may provide an effective and potentially durable form of resistance to B. graminis.
Resumo:
Stripe or yellow rust (YR) is a significant problem in wheat crops worldwide. The deployment of adult-plant resistance (APR) genes in wheat cultivars is considered a sustainable management strategy, as these genes confer partial resistance that is usually non-race specific. Screening for APR typically involves assessment of adult plants in the field, where expression may be influenced by environmental factors. We report a high-throughput screening method for YR APR that can be used to assess fixed lines or segregating populations grown under controlled environmental conditions (CEC). Inoculation of 3-week-old wheat plants from lines with known APR responses to YR, when grown under constant light and temperature, provided disease responses typical of adult plants. Two F-2 populations ('H45' x 'ST93' and 'Wyalkatchem' x 'ST93') segregating for APR were assessed under both CEC and field conditions. These populations showed similar variation in disease response and lines assessed in both environments attained similar rankings. Phenotypic screening using CEC and continuous light provides an opportunity to accelerate the development of new wheat cultivars with durable resistance.
Resumo:
The recent emergence of heritable high level resistance to phosphine in stored grain pests is a serious concern among major grain growing countries around the world. Here we describe the genetics of phosphine resistance in the rust red flour beetle Tribolium castaneum (Herbst), a pest of stored grain as well as a genetic model organism. We investigated three field collected strains of T. castaneum viz., susceptible (QTC4), weakly resistant (QTC1012) and strongly resistant (QTC931) to phosphine. The dose-mortality responses of their test- and inter-cross progeny revealed that most resistance was conferred by a single major resistance gene in the weakly (3.2x) resistant strain. This gene was also found in the strongly resistant (431x) strain, together with a second major resistance gene and additional minor factors. The second major gene by itself confers only 12-206x resistance, suggesting that a strong synergistic epistatic interaction between the genes is responsible for the high level of resistance (431x) observed in the strongly resistant strain. Phosphine resistance is not sex linked and is inherited as an incompletely recessive, autosomal trait. The analysis of the phenotypic fitness response of a population derived from a single pair inter-strain cross between the susceptible and strongly resistant strains indicated the changes in the level of response in the strong resistance phenotype; however this effect was not consistent and apparently masked by the genetic background of the weakly resistant strain. The results from this work will inform phosphine resistance management strategies and provide a basis for the identification of the resistance genes.
Resumo:
The lesser grain borer Rhyzopertha dominica (F.) is one of the most destructive insect pests of stored grain. This pest has been controlled successfully by fumigation with phosphine for the last several decades, though strong resistance to phosphine in many countries has raised concern about the long term usefulness of this control method. Previous genetic analysis of strongly resistant (SR) R. dominica from three widely geographically dispersed regions of Australia, Queensland (SRQLD), New South Wales (SRNSW) and South Australia (SRSA), revealed a resistance allele in the rph1 gene in all three strains. The present study confirms that the rph1 gene contributes to resistance in a fourth strongly resistant strain, SR2(QLD), also from Queensland. The previously described rph2 gene, which interacts synergistically with rph1 gene, confers strong resistance on SRQLD and SRNSW. We now provide strong circumstantial evidence that weak alleles of rph2, together with rph1, contribute to the strong resistance phenotypes of SRSA and SR2(QLD). To test the notion that rph1 and rph2 are solely responsible for the strong resistance phenotype of all resistant R. dominica, we created a strain derived by hybridising the four strongly resistant lines. Following repeated selection for survival at extreme rates of phosphine exposure, we found only slightly enhanced resistance. This suggests that a single sequence of genetic changes was responsible for the development of resistance in these insects.
Resumo:
Phosphine is the only economically viable fumigant for routine control of insect pests of stored food products, but its continued use is now threatened by the world-wide emergence of high-level resistance in key pest species. Phosphine has a unique mode of action relative to well-characterised contact pesticides. Similarly, the selective pressures that lead to resistance against field sprays differ dramatically from those encountered during fumigation. The consequences of these differences have not been investigated adequately. We determine the genetic basis of phosphine resistance in Rhyzopertha dominica strains collected from New South Wales and South Australia and compare this with resistance in a previously characterised strain from Queensland. The resistance levels range from 225 and 100 times the baseline response of a sensitive reference strain. Moreover, molecular and phenotypic data indicate that high-level resistance was derived independently in each of the three widely separated geographical regions. Despite the independent origins, resistance was due to two interacting genes in each instance. Furthermore, complementation analysis reveals that all three strains contain an incompletely recessive resistance allele of the autosomal rph1 resistance gene. This is particularly noteworthy as a resistance allele at rph1 was previously proposed to be a necessary first step in the evolution of high-level resistance. Despite the capacity of phosphine to disrupt a wide range of enzymes and biological processes, it is remarkable that the initial step in the selection of resistance is so similar in isolated outbreaks.
Resumo:
Transduction of resistance to isoniazid and streptomycin as well as susceptibility to isoniazid in Mycobacterium smegmatis SN2 has been demonstrated. A method has been described for the selection of isoniazid-susceptible variants after transduction of susceptibility.
Resumo:
The aim of this investigation was to determine the persistence of biofilm-associated antibiotic resistance developed by methicillin-sensitive Staphylococcus aureus (MSSA), of different capsular types, during biofilm formation. Because of superiority of the tissue culture plate (TCP) over the Congo Red Agar (CRA) method for measuring biofilm formation, it was used to determine the persistence of the antibiotic resistance developed by the isolates in biofilms. The antibiotic resistance was found to persist for 3-4 wk post-propagation as planktonic subcultures. Interestingly, some strains even developed resistance to vancomycin and/or teicoplanin. However, no association of either biofilm formation or persistent antibiotic resistance with the major capsular phenotype was observed. These observations highlight the potential significance of (a) determining the antibiograms of S. aureus subcultured from biofilms developed in vitro using the TCP method as well as from planktonic cultures for formulation of an optimal therapeutic strategy, and (b) continuing to identify predominant non-capsular antigens contributing to biofilm formation, regardless of the capsular phenotype for the development of an effective potentially broad-spectrum vaccine for prevention of bovine mastitis caused by S. aureus.
Resumo:
A new mode of driven nonlinear vibrations of a stretched string is investigated with reference to conditions of existence, properties, and regions of stability. It is shown that this mode exhibits negative resistance properties at all frequencies and driving force amplitudes. Discovery of this mode helps to fill certain gaps in the theory of forced nonlinear vibrations of strings.