849 resultados para Service Programming Model
Resumo:
The International Conference on Advanced Materials, Structures and Mechanical Engineering 2015 (ICAMSME 2015) was held on May 29-31, Incheon, South-Korea. The conference was attended by scientists, scholars, engineers and students from universities, research institutes and industries all around the world to present on going research activities. This proceedings volume assembles papers from various professionals engaged in the fields of materials, structures and mechanical engineering.
Resumo:
Model Driven based approach for Service Evolution in Clouds will mainly focus on the reusable evolution patterns' advantage to solve evolution problems. During the process, evolution pattern will be driven by MDA models to pattern aspects. Weaving the aspects into service based process by using Aspect-Oriented extended BPEL engine at runtime will be the dynamic feature of the evolution.
Resumo:
In this thesis, tool support is addressed for the combined disciplines of Model-based testing and performance testing. Model-based testing (MBT) utilizes abstract behavioral models to automate test generation, thus decreasing time and cost of test creation. MBT is a functional testing technique, thereby focusing on output, behavior, and functionality. Performance testing, however, is non-functional and is concerned with responsiveness and stability under various load conditions. MBPeT (Model-Based Performance evaluation Tool) is one such tool which utilizes probabilistic models, representing dynamic real-world user behavior patterns, to generate synthetic workload against a System Under Test and in turn carry out performance analysis based on key performance indicators (KPI). Developed at Åbo Akademi University, the MBPeT tool is currently comprised of a downloadable command-line based tool as well as a graphical user interface. The goal of this thesis project is two-fold: 1) to extend the existing MBPeT tool by deploying it as a web-based application, thereby removing the requirement of local installation, and 2) to design a user interface for this web application which will add new user interaction paradigms to the existing feature set of the tool. All phases of the MBPeT process will be realized via this single web deployment location including probabilistic model creation, test configurations, test session execution against a SUT with real-time monitoring of user configurable metric, and final test report generation and display. This web application (MBPeT Dashboard) is implemented with the Java programming language on top of the Vaadin framework for rich internet application development. The Vaadin framework handles the complicated web communications processes and front-end technologies, freeing developers to implement the business logic as well as the user interface in pure Java. A number of experiments are run in a case study environment to validate the functionality of the newly developed Dashboard application as well as the scalability of the solution implemented in handling multiple concurrent users. The results support a successful solution with regards to the functional and performance criteria defined, while improvements and optimizations are suggested to increase both of these factors.
Resumo:
A High-Performance Computing job dispatcher is a critical software that assigns the finite computing resources to submitted jobs. This resource assignment over time is known as the on-line job dispatching problem in HPC systems. The fact the problem is on-line means that solutions must be computed in real-time, and their required time cannot exceed some threshold to do not affect the normal system functioning. In addition, a job dispatcher must deal with a lot of uncertainty: submission times, the number of requested resources, and duration of jobs. Heuristic-based techniques have been broadly used in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time. However, the scheduling and resource allocation components are separated, thus generates a decoupled decision that may cause a performance loss. Optimization-based techniques are less used for this problem, although they can significantly improve the performance of HPC systems at the expense of higher computation time. Nowadays, HPC systems are being used for modern applications, such as big data analytics and predictive model building, that employ, in general, many short jobs. However, this information is unknown at dispatching time, and job dispatchers need to process large numbers of them quickly while ensuring high Quality-of-Service (QoS) levels. Constraint Programming (CP) has been shown to be an effective approach to tackle job dispatching problems. However, state-of-the-art CP-based job dispatchers are unable to satisfy the challenges of on-line dispatching, such as generate dispatching decisions in a brief period and integrate current and past information of the housing system. Given the previous reasons, we propose CP-based dispatchers that are more suitable for HPC systems running modern applications, generating on-line dispatching decisions in a proper time and are able to make effective use of job duration predictions to improve QoS levels, especially for workloads dominated by short jobs.
Resumo:
The pervasive availability of connected devices in any industrial and societal sector is pushing for an evolution of the well-established cloud computing model. The emerging paradigm of the cloud continuum embraces this decentralization trend and envisions virtualized computing resources physically located between traditional datacenters and data sources. By totally or partially executing closer to the network edge, applications can have quicker reactions to events, thus enabling advanced forms of automation and intelligence. However, these applications also induce new data-intensive workloads with low-latency constraints that require the adoption of specialized resources, such as high-performance communication options (e.g., RDMA, DPDK, XDP, etc.). Unfortunately, cloud providers still struggle to integrate these options into their infrastructures. That risks undermining the principle of generality that underlies the cloud computing scale economy by forcing developers to tailor their code to low-level APIs, non-standard programming models, and static execution environments. This thesis proposes a novel system architecture to empower cloud platforms across the whole cloud continuum with Network Acceleration as a Service (NAaaS). To provide commodity yet efficient access to acceleration, this architecture defines a layer of agnostic high-performance I/O APIs, exposed to applications and clearly separated from the heterogeneous protocols, interfaces, and hardware devices that implement it. A novel system component embodies this decoupling by offering a set of agnostic OS features to applications: memory management for zero-copy transfers, asynchronous I/O processing, and efficient packet scheduling. This thesis also explores the design space of the possible implementations of this architecture by proposing two reference middleware systems and by adopting them to support interactive use cases in the cloud continuum: a serverless platform and an Industry 4.0 scenario. A detailed discussion and a thorough performance evaluation demonstrate that the proposed architecture is suitable to enable the easy-to-use, flexible integration of modern network acceleration into next-generation cloud platforms.
Resumo:
Chloride attack in marine environments or in structures where deicing salts are used will not always show profiles with concentrations that decrease from the external surface to the interior of the concrete. Some profiles show an increase in chloride concentrations from when a peak is formed. This type of profile must be analyzed in a different way from the traditional model of Fick`s second law to generate more precise service life models. A model for forecasting the penetration of chloride ions as a function of time for profiles having formed a peak. To confirm the efficiency of this model, it is necessary to observe the behavior of a chloride profile with peak in a specific structure over a period of time. To achieve this, two chloride profiles with different ages (22 and 27 years) were extracted from the same structure. The profile obtained from the 22-year sample was used to estimate the chloride profile at 27 years using three models: a) the traditional model using Fick`s second law and extrapolating the value of C(S)-external surface chloride concentration; b) the traditional model using Fick`s second law and shifting the x-axis to the peak depth; c) the previously proposed model. The results from these models were compared with the actual profile measured in the 27-year sample and the results were analyzed. The model was presented with good precision for this study of case, requiring to be tested with other structures in use.
Resumo:
The purpose is to present a scientific research that led to the modeling of an information system which aimed at the maintenance of traceability data in the Brazilian wine industry, according to the principles of a service-oriented architecture (SOA). Since 2005, traceability data maintenance is an obligation for all producers that intend to export to any European Union country. Also, final customers, including the Brazilian ones, have been asking for information about food products. A solution that collectively contemplated the industry was sought in order to permit that producer consortiums of associations could share the costs and benefits of such a solution. Following an extensive bibliographic review, a series of interviews conducted with Brazilian researchers and wine producers in Bento Goncalves - RS, Brazil, elucidated many aspects associated with the wine production process. Information technology issues related to the theme were also researched. The software was modeled with the Unified Modeling Language (UML) and uses web services for data exchange. A model for the wine production process was also proposed. A functional prototype showed that the adopted model is able to fulfill the demands of wine producers. The good results obtained lead us to consider the use of this model in other domains.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The TCP/IP architecture was consolidated as a standard to the distributed systems. However, there are several researches and discussions about alternatives to the evolution of this architecture and, in this study area, this work presents the Title Model to contribute with the application needs support by the cross layer ontology use and the horizontal addressing, in a next generation Internet. For a practical viewpoint, is showed the network cost reduction for the distributed programming example, in networks with layer 2 connectivity. To prove the title model enhancement, it is presented the network analysis performed for the message passing interface, sending a vector of integers and returning its sum. By this analysis, it is confirmed that the current proposal allows, in this environment, a reduction of 15,23% over the total network traffic, in bytes.
Model for facilities or vendors location in a global scale considering several echelons in the Chain
Resumo:
The facilities location problem for companies with global operations is very complex and not well explored in the literature. This work proposes a MILP model that solves the problem through minimization of the total logistic cost. Main contributions of the model are the pioneer carrying cost calculation, the treatment given to the take-or-pay costs and to the international tax benefits such as drawback and added value taxes in Brazil. The model was successfully applied to a real case of a chemical industry with industrial plants and sales all over the world. The model application recommended a totally new sourcing model for the company.
Resumo:
The economic occupation of an area of 500 ha for Piracicaba was studied with the irrigated cultures of maize, tomato, sugarcane and beans, having used models of deterministic linear programming and linear programming including risk for the Target-Motad model, where two situations had been analyzed. In the deterministic model the area was the restrictive factor and the water was not restrictive for none of the tested situations. For the first situation the gotten maximum income was of R$ 1,883,372.87 and for the second situation it was of R$ 1,821,772.40. In the model including risk a producer that accepts risk can in the first situation get the maximum income of R$ 1,883,372. 87 with a minimum risk of R$ 350 year(-1), and in the second situation R$ 1,821,772.40 with a minimum risk of R$ 40 year(-1). Already a producer averse to the risk can get in the first situation a maximum income of R$ 1,775,974.81 with null risk and for the second situation R$ 1.707.706, 26 with null risk, both without water restriction. These results stand out the importance of the inclusion of the risk in supplying alternative occupations to the producer, allowing to a producer taking of decision considered the risk aversion and the pretension of income.
Resumo:
1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.
Resumo:
1. A model of the population dynamics of Banksia ornata was developed, using stochastic dynamic programming (a state-dependent decision-making tool), to determine optimal fire management strategies that incorporate trade-offs between biodiversity conservation and fuel reduction. 2. The modelled population of B. ornata was described by its age and density, and was exposed to the risk of unplanned fires and stochastic variation in germination success. 3. For a given population in each year, three management strategies were considered: (i) lighting a prescribed fire; (ii) controlling the incidence of unplanned fire; (iii) doing nothing. 4. The optimal management strategy depended on the state of the B. ornata population, with the time since the last fire (age of the population) being the most important variable. Lighting a prescribed fire at an age of less than 30 years was only optimal when the density of seedlings after a fire was low (< 100 plants ha(-1)) or when there were benefits of maintaining a low fuel load by using more frequent fire. 5. Because the cost of management was assumed to be negligible (relative to the value of the persistence of the population), the do-nothing option was never the optimal strategy, although lighting prescribed fires had only marginal benefits when the mean interval between unplanned fires was less than 20-30 years.
Resumo:
A modelling framework is developed to determine the joint economic and environmental net benefits of alternative land allocation strategies. Estimates of community preferences for preservation of natural land, derived from a choice modelling study, are used as input to a model of agricultural production in an optimisation framework. The trade-offs between agricultural production and environmental protection are analysed using the sugar industry of the Herbert River district of north Queensland as an example. Spatially-differentiated resource attributes and the opportunity costs of natural land determine the optimal tradeoffs between production and conservation for a range of sugar prices.