926 resultados para Sequence Stratigraphy
Resumo:
We have analyzed the set of inter and intra base pair parameters for each dinucleotide step in single crystal structures of dodecamers, solved at high and medium resolution and all crystallized in P2(1)2(1)2(1) space group. The objective was to identify whether all the structures which have either the Drew-Dickerson (DD) sequence d[CGCGAATTCGCG] with some base modification or related sequence (non-DD), would display the same sequence dependent structural variability about its palindromic sequence, despite the molecule being bent at one end because of similar crystal lattice packing effect. Most of the local doublet parameters for base pairs steps G2-C3 and G10-C11 positions, symmetrically situated about the lateral twofold, were significantly correlated between themselves. In non-DD sequences, significant correlations between these positional parameters were absent. The different range of local step parameter values at each sequence position contributed to the gross feature of smooth helix axis bending in all structures. The base pair parameters in some of the positions, for medium resolution DD sequence, were quite unlike the high-resolution set and encompassed a higher range of values. Twist and slide are the two main parameters that show wider conformational range for the middle region of non-DD sequence structures in comparison to DD sequence structures. On the contrary, the minor and major groove features bear good resemblance between DD and non-DD sequence crystal structure datasets. The sugar-phosphate backbone torsion angles are similar in all structures, in sharp contrast to base pair parameter variation for high and low resolution DD and non-DD sequence structures, consisting of unusual (epsilon =g(-), xi =t) B-II conformation at the 10(th) position of the dodecamer sequence. Thus examining DD and non-DD sequence structures packed in the same crystal lattice arrangement, we infer that inter and intra base pair parameters are as symmetrically equivalent in its value as the symmetry related step for the palindromic DD sequence about lateral two-fold axis. This feature would lead us to agree with the conclusion that DNA conformation is not substantially affected by end-to-end or lateral inter-molecular interaction due to crystal lattice packing effect. Non-DD sequence structures acquire step parameter values which reflect the altered sequence at each of the dodecamer sequence position in the orthorhombic lattice while showing similar gross features of DD sequence structures
Resumo:
Synthesis of methyl ester of 3-oxo-indan-5-acetic acid (3), an analogue of the natura1 product pterosin-E (4), starting from cyclopentadiene (1) and p-benzoquinone (2) using a sequence of six ground and excited state reactions, is described.
Resumo:
Separated Local Field (SLF) spectroscopy is a powerful tool for the determination of structure and dynamics of oriented systems such as membrane proteins oriented in lipid bilayers and liquid crystals. Of many SLF techniques available, Polarization Inversion Spin Exchange at Magic Angle (PISEMA) has found wide application due to its many favorable characteristics. However the pulse sequence suffers from its sensitivity to proton resonance frequency offset. Recently we have proposed a new sequence named 2(4)-SEMA (J. Chem. Phys. 132 (2010) 134301) that overcomes this problem of PISEMA. The present work demonstrates the advantage of 2(4)-SEMA as a highly sensitive SLF technique even for very large proton offset. 2(4)-SEMA has been designed for obtaining reliable dipolar couplings by switching the magic-angle spin-lock for protons over four quadrants as against the use of only two quadrants in PISEMA. It is observed that for on-resonance condition, 2(4)-SEMA gives rise to signal intensity comparable to or slightly higher than that from PISEMA. But under off-resonance conditions, intensities from 2(4)-SEMA are several fold higher than those from PISEMA. Comparison with another offset compensated pulse sequence, SAMPI4, also indicates a better intensity profile for 2(4)-SEMA. Experiments carried out on a single crystal of N-15 labeled N-acetyl-DL-valine and simulations have been used to study the relative performance of the pulse sequences considered. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The importance and usefulness of local doublet parameters in understanding sequence dependent effects has been described for A- and B-DNA oligonucleotide crystal structures. Each of the two sets of local parameters described by us in the NUPARM algorithm, namely the local doublet parameters, calculated with reference to the mean z-axis, and the local helical parameters, calculated with reference to the local helix axis, is sufficient to describe the oligonucleotide structures, with the local helical parameters giving a slightly magnified picture of the variations in the structures. The values of local doublet parameters calculated by NUPARM algorithm are similar to those calculated by NEWHELIX90 program, only if the oligonucleotide fragment is not too distorted. The mean values obtained using all the available data for B-DNA crystals are not significantly different from those obtained when a limited data set is used, consisting only of structures with a data resolution of better than 2.4 A and without any bound drug molecule. Thus the variation observed in the oligonucleotide crystals appears to be independent of the quality of their crystallinity. No strong correlation is seen between any pair of local doublet parameters but the local helical parameters are interrelated by geometric relationships. An interesting feature that emerges from this analysis is that the local rise along the z-axis is highly correlated with the difference in the buckle values of the two basepairs in the doublet, as suggested earlier for the dodecamer structures (Bansal and Bhattacharyya, in Structure & Methods: DNA & RNA, Vol. 3 (Eds., R.H. Sarma and M.H. Sarma), pp. 139-153 (1990)). In fact the local rise values become almost constant for both A- and B-forms, if a correction is applied for the buckling of the basepairs. In B-DNA the AA, AT, TA and GA basepair sequences generally have a smaller local rise (3.25 A) compared to the other sequences (3.4 A) and this seems to be an intrinsic feature of basepair stacking interaction and not related to any other local doublet parameter. The roll angles in B-DNA oligonucleotides have small values (less than +/- 8 degrees), while mean local twist varies from 24 degrees to 45 degrees. The CA/TG doublet sequences show two types of preferred geometries, one with positive roll, small positive slide and reduced twist and another with negative roll, large positive slide and increased twist.(ABSTRACT TRUNCATED AT 400 WORDS)
Resumo:
Recent experimental studies have shown that the Rec-A mediated homologous recombination reaction involves a triple helical intermediate, in which the third strand base forms hydrogen bonds with both the bases in the major groove of the Watson-Crick duplex. Such 'mixed' hydrogen bonds allow formation of sequence independent triplexes. DNA triple helices involving 'mixed' hydrogen bonds have been studied, using model building, molecular mechanics (MM) and molecular dynamics (MD). Models were built for a tripler comprising all four possible triplets viz., G.C*C, C.G*G, A.T*T and T.A*A. To check the stability of all the 'mixed' hydrogen bonds in such triplexes and the conformational preferences of such tripler structures, MD studies were carried out starting from two structures with 30 degrees and 36 degrees twist between the basepairs. It was observed that though the two triplexes converged towards a similar structure, the various hydrogen bonds between the WC duplex and the third strand showed differential stabilities. An MD simulation with restrained hydrogen bonds showed that the resulting structure was stable and remained close to the starting structure. These studies help us in defining stable hydrogen bond geometries involving the third strand and the WC duplex. It was observed that in the C.G*G triplets the N7 atom of the second strand is always involved in hydrogen bonding. In the G.C*C triplets, either N3 or O2 in the third strand cytosine can interchangeably act as a hydrogen bond acceptor.
Resumo:
DNA triple helices containing two purine strands and one pyrimidine strand (C.G*G and T.A*A) have been studied, using model building followed by energy minimisation, for different orientations of the third strand resulting from variation in the hydrogen bonding between the Watson-Crick duplex and the third strand and the glycosidic torsion angle in the third strand. Our results show that in the C.G*G case the structure with a parallel orientation of the third strand, resulting from Hoogsteen hydrogen bonds between the third strand and the Watson-Crick duplex, is energetically the most favourable while in the T.A*A case the antiparallel orientation of the third strand, resulting from reverse Hoogsteen hydrogen bonds, is energetically the most favourable. These studies when extended to the mixed sequence triplexes, in which the second strand is a mixture of G and A, correspondingly the third strand is a mixture of G and APT, show that though the parallel orientation is still energetically more favourable, the antiparallel orientation becomes energetically comparable with an increasing number of thymines in the third strand. Structurally, for the mixed triplexes containing G and T in the third strand, it is seen that the basepair non-isomorphism between the C.G*G and the T.A*T triplets can be overcome with some changes in the base pair parameters without much distortion of either the backbone or the hydrogen bonds.
Resumo:
The double helical regions of the five tRNA(Phe) and two tRNA(Asp) crystal structures have been analyzed using the local basepair step parameters. The sequence dependent effects in the mini double helices of tRNA are very similar to those observed in the crystal structures of oligonucleotides in the A-form, the purine-pyrimidine and purine-purine steps have small roll angles when compared to the fiber models of A-DNA as well as A-RNA, while the pyrimidine-purine doublet steps have large roll angles. The orientation of the basepairs in the D-stem is unusual and invariant i.e. they are different from the other three stems but are very similar in all the five tRNA(Phe) crystal structures, presumably due to tertiary interaction of the Watson-Crick basepairs with other bases, with all bases being highly conserved. The origin of the differences between the tertiary structures of tRNA(Phe) and tRNA(Asp) from yeast has also been investigated. It is found that even though the angle between the acceptor arm and the D-stem is very similar in the two structures, the angle subtended by the acceptor arm and the anticodon arm is smaller in the tRNA(Phe) structure (by more than 10 degrees). This is due to differences in the orientation of the two mini helices constituting the anticodon arm, which are inclined to each other by approximately 25 degrees in tRNA(Phe) and 16 degrees in tRNA(Asp). In addition, the acceptor arm, the D-stem and the anticodon stem are nearly coplanar in tRNA(Phe), while in tRNA(Asp) the anticodon stem projects out of the plane defined by the acceptor arm and the anticodon stem. These two features together lead to a larger separation between the acceptor and anticodon ends in tRNA(Asp) and indicate that the junction between the D-stem and the anticodon stem is quite variable, with features characteristic of a ball-and-socket type joint and determined for each tRNA molecule by the base sequence at the junction.
Resumo:
An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.
Resumo:
The nucleotide sequence of genes 4 and 9, encoding the outer capsid proteins VP4 and VP7 of a serotype 10 tissue culture-adapted strain, 1321, representative of asymptomatic neonatal rotaviruses isolated from neonates in Bangalore, India, were determined. Comparison of nucleotide and deduced amino acid sequences of 1321 VP4 and VP7 with previously published sequences of various serotypes revealed that both genes were highly homologous to the respective genes of serotype 10 bovine rotavirus, B223. The VP4 of 1321 represents a new human P serotype and the 1321 and related strains represent the first description of neonatal rotaviruses that appear to derive both surface proteins from an animal rotavirus.
Resumo:
An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.
Resumo:
The nucleotide sequence of cosmid B1790, carrying the Rif-Str regions of the Mycobacterium leprae chromosome, has been determined. Twelve open reading frames were identified in the 36716bp sequence, representing 40% of the coding capacity. Five ribosomal proteins, two elongation factors and the β and β'subunits of RNA polymerase have been characterized and two novel genes were found. One of these encodes a member of the so-called ABC family of ATP-binding proteins while the other appears to encode an enzyme involved in repairing genomic lesions caused by free radicals. This finding may well be significant as M. leprae, an intracellular pathogen, lives within macrophages.
Resumo:
Sesbania mosaic virus (SMV) is a plant virus infecting Sesbania grandiflora plants in Andhra Pradesh, India. Amino acid sequence of the tryptic peptides of SMV coat protein were determined using a gas phase sequenator. These sequences showed identical amino acids at 69% of the positions when aligned with the corresponding residues of southern bean mosaic virus (SBMV).Crystals diffracting to better than 3 Å resolution were obtained by precipitating the virus with ammonium sulphate. The crystals belonged to rhombohedral space group R3 with α = 291·4 Å and α = 61·9°. Three-dimensional X-ray diffraction data on these crystals were collected to a resolution of 4·7 Å, using a Siemens-Nicolet area detector system. Self-rotation function studies revealed the icosahedral symmetry of the virus particles, as well as their precise orientation in the unit cell. Cross-rotation function and modelling studies with SBMV showed that it is a valid starting model for SMV structure determination. Low resolution phases computed using a polyalanine model of SBMV were subjected to refinement and extension by real-space electron density averaging and solvent flattening. The final electron density map revealed a polypeptide fold similar to SBMV. The single disulphide bridge of SBMV coat protein is retained in SMV. Four icosahedrally independent cation binding sites have been tentatively identified. Three of these sites, related by a quasi threefold axis, are also found in SBMV. The fourth site is situated on the quasi threefold axis. Aspartic acid residues, which replace Ile218 of SBMV from the quasi threefold-related subunits are suitable ligands to the cation at this site
Resumo:
Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective `unlabeling' or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly C-13/N-15 labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {(CO)-C-12 (i) -N-15 (i+1)}-filtered HSQC, which aids in linking the H-1(N)/N-15 resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i - 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to H-2 labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of N-14 at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.
Resumo:
The conformation of amino acid side chains as observed in well-determined structures of globular proteins has earlier been extensively investigated. In contrast, the structural features of the polypeptide backbone that result from the occurrence of specific amino acids along the polypeptide have not been analysed. In this article, we present the statistically significant features in the backbone geometry that appear to be a consequence of the occurrence of rotamers of different amino acid side chains by analysing 102 well-refined structures that form a random collection of proteins. It is found that the persistence of helical segments around each residue is influenced by the residue type. Several residues exert asymmetrical influence between the carboxyl and amino terminal polypeptide segments. The degree to which secondary structures depart from an average geometry also appears to depend on residue type. These departures are correlated to the corresponding Chou and Fasman parameters of amino acid residues. The frequency distribution of the side chain rotamers is influenced by polypeptide secondary structure. In turn, the rotamer conformation of side chain affects the extension of the secondary structure of the backbone. The strongest correlation is found between the occurrence of g+ conformation and helix propagation on the carboxyl side of many residues.