783 resultados para Semiconductors amorfs
Resumo:
Advanced oxidative processes (AOPs) are based on chemical processes that can generate free radicals, such as hydroxyl radicals (.OH) which are strong, non-selective oxidant species that react with the vast majority of organic compounds. Nanostructured semiconductors, especially titanium dioxide (TiO2) in the anatase phase, are well-established photocatalysts for this process, which have proved to be useful in the degradation of dyes, pesticides and other contaminants. Research in different strategies for the synthesis of nanostructured semiconductors, with particular characteristic is currently a topic of interest in many studies. Thus, this paper presents a review about various synthesis strategies of nanostructured photocatalysts.
Resumo:
Titanium dioxide is an efficient photocatalist, being possible to improve its efficiency with better charge separation which occurs when it is coupled with other semiconductors. Nanometric particles of ZnO were used to impregnate TiO2 P25 in order to optimize its photocatalytic properties. ZnO/TiO2 composites were obtained at different proportions and were characterized by X-ray diffraction (XRD), micro-Raman and diffuse reflectance spectroscopies, measurement of surface area (BET) and scanning electron microscopy (SEM). Raman spectroscopy data revealed a change on the TiO2 surface due the presence of ZnO which was observed by an enlargement of TiO2 peaks and a change on the relation rate between anatase and rutile phases of the composites. The photodegradation of azo-dye Drimaren red revealed better efficiency for ZnO/TiO2 3% nanocomposite and for ZnO pure.
Resumo:
The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis). It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well.
Resumo:
In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi2WO6 was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO2 semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi2WO6-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO2 electrodes, even without sensitization. These results portray solar cells based on Bi2WO6 as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition.
Resumo:
Microemulsions (MEs) are thermodynamically stable systems consisting of nanosized droplets dispersed in a solvent continuous medium (known as pseudo-phase), which is immiscible with the dispersed phase. These systems consist of water, a hydrophobic solvent called "oil," an amphiphile and often, a co-surfactant that is normally a medium chain alcohol. A large number of publications describe the importance of MEs in many branches of chemistry, and there is an intensive search for new applications. In addition, MEs have been applied in many areas, including oil extraction, removal of environmental pollutants from soils and effluents, dissolution of additives in lubricants and cutting oils, cleaning processes, dyeing and textile finishing, as nanoreactors to obtain nanoparticles of metals, semiconductors, superconductors, magnetic and photographic materials, and latex. However, only some studies indicate the potential applications of MEs in food and even fewer evaluate their chemical behavior. Potential applications of MEs in food comprise dissolution of lipophilic additives, stabilization of nutrients and biologically active compounds, using as an antimicrobial agent and to maximize the efficiency of food preservatives. This work consists of a literature review focusing on composition and physical and chemical characteristics of microemulsions. Despite the small number of studies on the subject reported in the literature, we demonstrate some potential applications of MEs in food chemistry.
Resumo:
ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Resumo:
The objective of this master’s thesis is to investigate the loss behavior of three-level ANPC inverter and compare it with conventional NPC inverter. The both inverters are controlled with mature space vector modulation strategy. In order to provide the comparison both accurate and detailed enough NPC and ANPC simulation models should be obtained. The similar control model of SVM is utilized for both NPC and ANPC inverter models. The principles of control algorithms, the structure and description of models are clarified. The power loss calculation model is based on practical calculation approaches with certain assumptions. The comparison between NPC and ANPC topologies is presented based on results obtained for each semiconductor device, their switching and conduction losses and efficiency of the inverters. Alternative switching states of ANPC topology allow distributing losses among the switches more evenly, than in NPC inverter. Obviously, the losses of a switching device depend on its position in the topology. Losses distribution among the components in ANPC topology allows reducing the stress on certain switches, thus losses are equally distributed among the semiconductors, however the efficiency of the inverters is the same. As a new contribution to earlier studies, the obtained models of SVM control, NPC and ANPC inverters have been built. Thus, this thesis can be used in further more complicated modelling of full-power converters for modern multi-megawatt wind energy conversion systems.
Resumo:
Fotokatalyysillä tarkoitetaan spontaania kemiallista reaktiota, joka tapahtuu fotokatalyytin absorboidessa valoa. Reaktio voi tapahtua joko katalyytin pinnalla tai sen läheisyydessä, mutta fotokatalyytti pysyy reaktiossa muuttumattomana. Ominaisuuksiltaan paras ja eniten tutkittu fotokatalyyttinen materiaali on titaanidioksidi, jolla on säteilytettynä kyky hajottaa orgaanisia molekyylejä hiilidioksidiksi ja vedeksi. Fotokatalyysin käyttömahdollisuuksia tutkitaan membraanikalvojen puhdistamisessa kalvojen käyttöiän ja erotustehokkuuden parantamiseksi. Nykyisin kalvojen puhdistamiseen käytetään useimmiten kemiallista pesua, jonka tuloksena on usein haitallisia yhdisteitä sisältävä liuos. Fotokatalyyttinen puhdistus voisi olla ratkaisu ongelmaan, sillä sen avulla voitaisiin puhdistamisessa käytettävien kemikaalien ja siinä muodostuvien jätteiden määrää vähentää. Tämän työn kokeellisessa osassa tutkittiin polyvinyylideenifluoridikalvon (PVDF) kestävyyttä ja puhdistumista fotokatalyyttisissä reaktioissa. PVDF:n on todettu olevan erinomainen kalvomateriaali, koska se on termisesti stabiili ja se kestää hyvin kemikaaleja, kuten orgaanisia liuottimia, happoja ja emäksiä. Työssä todettiin PVDF-kalvon puhdistuvan UV/TiO2-käsittelyn avulla. Kalvo puhdistui parhaiten, kun käytettiin 0,425 m- % TiO2-liuosta. Puhdistumista havainnoitiin sekä puhtaan veden vuon mittauksilla että värjäämällä käsiteltyjä kalvoja ja mittaamalla niiden värinintensiteetti.
Resumo:
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding losses can be predicted quite accurately before actually constructing the transformer. The transformer leakage inductance, the amount of which can also be calculated with reasonable accuracy, has a significant impact on the semiconductor switching losses. Therefore, the leakage inductance effects should also be taken into account when considering the overall efficiency of the converter. It is demonstrated in this thesis that although there are some distinctive differences in the loss distributions between the converter topologies, the differences in the overall efficiency can remain within a range of a few percentage points. However, the optimization effort required in order to achieve the high efficiencies is quite different in each topology. In the presence of practical constraints such as manufacturing complexity or cost, the question of topology selection can become crucial.
Resumo:
Investigation of galvanomagnetic effects in nanostructure GaAs/Mn/GaAs/In0.15Ga0.85As/ GaAs is presented. This nanostructure is classified as diluted magnetic semiconductor (DMS). Temperature dependence of transverse magnetoresistivity of the sample was studied. The anomalous Hall effect was detected and subtracted from the total Hall component. Special attention was paid to the measurements of Shubnikov-de Haas oscillations, which exists only in the case of magnetic field aligned perpendicularly to the plane of the sample. This confirms two-dimensional character of the hole energy spectrum in the quantum well. Such important characteristics as cyclotron mass, the Fermi energy and the Dingle temperature were calculated, using experimental data of Shubnikov-de Haas oscillations. The hole concentration and hole mobility in the quantum well also were estimated for the sample. At 4.2 K spin splitting of the maxima of transverse resistivity was observed and g-factor was calculated for that case. The values of the Dingle temperatures were obtained by two different approaches. From the comparison of these values it was concluded that the broadening of Landau levels in the investigated structure is mainly defined by the scattering of charge carriers on the defects of the crystal lattice
Resumo:
High magnetic fields and extremely low temperatures are essential in the study of new semiconductor materials for example in the field of spintronics. Typical phenomenons that arise in such conditions are: Hall Effect, Anomalous Hall effect and Shubnikov de-Haas effect. In this thesis a device capable for such conditions was described. A strong magnetic field pulse generator situated in the laboratory of physics and the Lappeenranta University of Technology was studied. The device is introduced in three parts. First one is the pulsed field magnetic generator, which is responsible for generating the high magnetic field. Next one is the measurement systems, which are responsible for monitoring the sample and the system itself. The last part describes the cryostat system, which allows the extremely cold temperatures in the system.
Resumo:
Defects in semiconductor crystals and at their interfaces usually impair the properties and the performance of devices. These defects include, for example, vacancies (i.e., missing crystal atoms), interstitials (i.e., extra atoms between the host crystal sites), and impurities such as oxygen atoms. The defects can decrease (i) the rate of the radiative electron transition from the conduction band to the valence band, (ii) the amount of charge carriers, and (iii) the mobility of the electrons in the conduction band. It is a common situation that the presence of crystal defects can be readily concluded as a decrease in the luminescence intensity or in the current flow for example. However, the identification of the harmful defects is not straightforward at all because it is challenging to characterize local defects with atomic resolution and identification. Such atomic-scale knowledge is however essential to find methods for reducing the amount of defects in energy-efficient semiconductor devices. The defects formed in thin interface layers of semiconductors are particularly difficult to characterize due to their buried and amorphous structures. Characterization methods which are sensitive to defects often require well-defined samples with long range order. Photoelectron spectroscopy (PES) combined with photoluminescence (PL) or electrical measurements is a potential approach to elucidate the structure and defects of the interface. It is essential to combine the PES with complementary measurements of similar samples to relate the PES changes to changes in the interface defect density. Understanding of the nature of defects related to III-V materials is relevant to developing for example field-effect transistors which include a III-V channel, but research is still far from complete. In this thesis, PES measurements are utilized in studies of various III-V compound semiconductor materials. PES is combined with photoluminescence measurements to study the SiO2/GaAs, SiNx/GaAs and BaO/GaAs interfaces. Also the formation of novel materials InN and photoluminescent GaAs nanoparticles are studied. Finally, the formation of Ga interstitial defects in GaAsN is elucidated by combining calculational results with PES measurements.
Resumo:
Increasing demand and shortage of energy resources and clean water due to the rapid development of industry, population growth and long term droughts have become an issue worldwide. As a result, global warming, long term droughts and pollution-related diseases are becoming more and more serious. The traditional technologies, such as precipitation, neutralization, sedimentation, filtration and waste immobilization, cannot prevent the pollution but restrict the waste chemicals only after the pollution emission. Meanwhile, most of these treatments cannot thoroughly degrade the contaminants and may generate toxic secondary pollutants into ecosystem. Heterogeneous photocatalysis as the innovative wastewater technology attracts many attention, because it is able to generate highly reactive transitory species for total degradation of organic compounds, water pathogens and disinfection by-products. Semiconductor as photocatalysts have demonstrated their efficiency in degrading a wide range of organics into readily biodegradable compounds, and eventually mineralized them to innocuous carbon dioxide and water. But, the efficiency of photocatalysis is limited, and hence, it is crucial issue to modify photocatalyst to enhance photocatalytic activity. In this thesis, first of all, two literature views are conducted. A survey of materials for photocatalysis has been carried out in order to summarize the properties and the applications of photocatalysts that have been developed in this field. Meanwhile, the strategy for the improvement of photocatalytic activity have been explicit discussed. Furthermore, all the raw material and chemicals used in this work have been listed as well as a specific experimental process and characterization method has been described. The synthesize methods of different photocatalysts have been depicted step by step. Among these cases, different modification strategies have been used to enhance the efficiency of photocatalyst on degradation of organic compounds (Methylene Blue or Phenol). For each case, photocatalytic experiments have been done to exhibit their photocatalytic activity.The photocatalytic experiments have been designed and its process have been explained and illustrated in detailed. Moreover, the experimental results have been shown and discussion. All the findings have been demonstrated in detail and discussed case by case. Eventually, the mechanisms on the improvement of photocatalytic activities have been clarified by characterization of samples and analysis of results. As a conclusion, the photocatalytic activities of selected semiconductors have been successfully enhanced via choosing appropriate strategy for the modification of photocatalysts.
Resumo:
Point-of-care (POC) –diagnostics is a field with rapidly growing market share. As these applications become more widely used, there is an increasing pressure to improve their performance to match the one of a central laboratory tests. Lanthanide luminescence has been widely utilized in diagnostics because of the numerous advantages gained by the utilization of time-resolved or anti-Stokes detection. So far the use of lanthanide labels in POC has been scarce due to limitations set by the instrumentation required for their detection and the shortcomings, e.g. low brightness, of these labels. Along with the advances in the research of lanthanide luminescence, and in the field of semiconductors, these materials are becoming a feasible alternative for the signal generation also in the future POC assays. The aim of this thesis was to explore ways of utilizing time-resolved detection or anti-Stokes detection in POC applications. The long-lived fluorescence for the time-resolved measurement can be produced with lanthanide chelates. The ultraviolet (UV) excitation required by these chelates is cumbersome to produce with POC compatible fluorescence readers. In this thesis the use of a novel light-harvesting ligand was studied. This molecule can be used to excite Eu(III)-ions at wavelengths extending up to visible part of the spectrum. An enhancement solution based on this ligand showed a good performance in a proof-of-concept -bioaffinity assay and produced a bright signal upon 365 nm excitation thanks to the high molar absorptivity of the chelate. These features are crucial when developing miniaturized readers for the time-resolved detection of fluorescence. Upconverting phosphors (UCPs) were studied as an internal light source in glucose-sensing dry chemistry test strips and ways of utilizing their various emission wavelengths and near-infrared excitation were explored. The use of nanosized NaYF :Yb3+,Tm3+-particles enabled the replacement of an external UV-light source with a NIR-laser and gave an additional degree of freedom in the optical setup of the detector instrument. The new method enabled a blood glucose measurement with results comparable to a current standard method of measuring reflectance. Microsized visible emitting UCPs were used in a similar manner, but with a broad absorbing indicator compound filtering the excitation and emission wavelengths of the UCP. This approach resulted in a novel way of benefitting from the non-linear relationship between the excitation power and emission intensity of the UCPs, and enabled the amplification of the signal response from the indicator dye.
Resumo:
Hybridiajoneuvosovellukset vaativat usein sekä korkea- että matalajännitejärjestelmän. Korkeajännitejärjestelmä sisältää yleensä energiavaraston, joka on joko superkondansaattori tai korkeajänniteakusto, dieselgeneraattorin tai range extenderin ja ajokäytön. Korkeajännitejärjestelmään liitetään usein myös erilaisia apukäyttöjä kuten kompressoreita ja hydraulipumppuja. Matalajännitejärjelmä koostuu yleensä ohjausyksiköistä, ajovaloista, yms. laitteista. Perinteisesti matalajännitejärjestelmää on syötetty dieselmoottorin laturista, mutta korkeajännitejärjestelmien myötä DC/DC-hakkurin käyttäminen korkea- ja matalajännitejärjestelmien välillä on herättänyt kiinnostusta, koska tällöin laturin voisi poistaa ja matalajänniteakustoa pienentää. Tässä työssä kuvatun monilähöisen tehonmuokkaimen invertterisilta soveltuu apukäyttöjen ajamiseen, ja erotettu DC/DC-hakkuri matalajännitejärjestelmän syöttämiseen. Tässä työssä käydään läpi edellä mainitun tehonmuokkaimen suunnittelu, keskittyen eritoten laitteen korkeajänniteosien mitoitukseen ja termiseen suunniteluun. DC/DC-hakkurin osalta perinteisiä piistä valmistettuja IGBT transistoreja vertaillaan piikarbidi MOSFET transistoreihin. Lämpömallilaskujen paikkaansapitävyyttä tutkitaan suorittamalla prototyyppilaitteelle hyötysuhdemittaus, jonka tuloksia verrataan laskettuihin tuloksiin. Lämpömallin parannusmahdollisuuksia käsitellään myös hyötysuhdemittauksen tulosten perusteella.