944 resultados para Segmented tunnel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results that compare the performance of neural networks trained with two Bayesian methods, (i) the Evidence Framework of MacKay (1992) and (ii) a Markov Chain Monte Carlo method due to Neal (1996) on a task of classifying segmented outdoor images. We also investigate the use of the Automatic Relevance Determination method for input feature selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersal of soredia from individual soralia of the lichen Hypogymnia physodes (L.) Nyl. was studied using a simple wind tunnel constructed in the field. Individual lobes with terminal soralia were placed in the wind tunnel on the adhesive surface of dust particle collectors. Air currents produced by a fan were directed over the surface of the lobes. The majority of soredia were deposited within 5 cm of the source soralium but some soredia were dispersed to at least 80 cm at a wind speed of 6 m s-1. Variation in wind speed had no statistically significant effect on the total number of soredial clusters deposited averaged over soralia but the mean size of cluster and the distance dispersed were greater at higher wind speeds. The number of soredia deposited was dependent on the orientation of the soralium to the air currents. More soredia were deposited with the soralium facing the fan at a wind speed of 9 m s-1. Moisture in the form of a fine mist reduced substantially the number of soredia deposited at a wind speed of 6 m s-1 but had no effect on the mean number of soredia per cluster or on the mean distance dispersed. The data suggest: (1) that wind dispersal from an individual soralium is influenced by wind speed, the location of the soralium on the thallus and the level of moisture and (2) that air currents directed over the surfaces of thalli located on the upper branches of trees would effectively disperse soredia of H. physodes vertically and horizontally within a tree canopy. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the first demonstration of multiplexed fibre Bragg grating strain sensors in a multicore fibre for shape measurement and their application to structural monitoring. Sets of gratings, acting as strain gauges, are co-located in the multicore fibre such that they enable the curvature to be determined via differential strain measurement. Multiple sets of these gratings allow the curvature to be measured at several points along the fibre. In this paper, the multicore fibre is configured to measure the deflection of a simple mechanical beam arising from the displacement of concrete tunnel sections. Laboratory tests are presented in which the system was demonstrated capable of displacement measurement with a resolution of ±0.1 mm over a range of several millimetres. © 2006 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To assess the visual performance and subjective experience of eyes implanted with a new bi-aspheric, segmented, multifocal intraocular lens: the Mplus X (Topcon Europe Medical, Capelle aan den IJssel, Netherlands). METHODS: Seventeen patients (mean age: 64.0 ± 12.8 years) had binocular implantation (34 eyes) with the Mplus X. Three months after the implantation, assessment was made of: manifest refraction; uncorrected and corrected distance visual acuity; uncorrected and distance corrected near visual acuity; defocus curves in photopic conditions; contrast sensitivity; halometry as an objective measure of glare; and patient satisfaction with unaided near vision using the Near Acuity Visual Questionnaire. RESULTS: Mean residual manifest refraction was -0.13 ± 0.51 diopters (D). Twenty-five eyes (74%) were within a mean spherical equivalent of ±0.50 D. Mean uncorrected distance visual acuity was +0.10 ± 0.12 logMAR monocularly and 0.02 ± 0.09 logMAR binocularly. Thirty-two eyes (94%) could read 0.3 or better without any reading correction and all patients could read 0.3 or better with a reading correction. Mean monocular uncorrected near visual acuity was 0.18 ± 0.16 logMAR, improving to 0.15 ± 0.15 logMAR with distance correction. Mean binocular uncorrected near visual acuity was 0.11 ± 0.11 logMAR, improving to 0.09 ± 0.12 logMAR with distance correction. Mean binocular contrast sensitivity was 1.75 ± 0.14 log units at 3 cycles per degree, 1.88 ± 0.20 log units at 6 cycles per degree, 1.66 ± 0.19 log units at 12 cycles per degree, and 1.11 ± 0.20 log units at 18 cycles per degree. Mean binocular and monocular halometry showed a glare profile of less than 1° of debilitating light scatter. Mean Near Acuity Visual Questionnaire Rasch score (0 = no difficulty, 100 = extreme difficulty) for satisfaction for near vision was 20.43 ± 14.64 log-odd units. CONCLUSIONS: The Mplus X provides a good visual outcome at distance and near with minimal dysphotopsia. Patients were very satisfied with their uncorrected near vision. © SLACK Incorporated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the remediation of burial grounds at the US Department of Energy's (DOE's) Hanford Site in Washington State, the dispersion of contaminated soil particles and dust is an issue that is faced by site workers on a daily basis. This contamination problem is even more of a concern when one takes into account the semi-arid characteristics of the region where the site is located. To mitigate this problem, workers at the site use a variety of engineered methods to minimize the dispersion of contaminated soil and dust (i.e. use of water and/or suppression agents that stabilizes the soil prior to soil excavation, segregation, and removal activities). A primary contributor to the dispersion of contaminated soil and dust is wind soil erosion. The erosion process occurs when the wind speed exceeds a certain threshold value which depends on a number of factors including wind force loading, particle size, surface soil moisture, and the geometry of the soil. Thus under these circumstances, the mobility of contaminated soil and generation and dispersion of particulate matter are significantly influenced by these parameters. This dependence of soil and dust movement on threshold shear velocity, fixative dilution and/or application rates, soil moisture content, and soil geometry were studied for Hanford's sandy soil through a series of wind tunnel experiments, laboratory experiments and theoretical analysis. In addition, the behavior of plutonium (Pu) powder contamination in the soil was studied by introducing a Pu simulant (cerium oxide). The results showed that soil dispersion and PM10 concentrations decreased with increasing soil moisture. Also, it was shown that the mobility of the soil was affected by increasing wind velocity. It was demonstrated that the use of fixative products greatly decreased the amount of soil and PM10 concentrations when exposed to varying wind conditions. In addition, it was shown that geometry of the soil sample affected the velocity profile and calculation of roughness surface coefficient when comparing round and flat soil samples. Finally, threshold shear velocities were calculated for soil with flat surface and their dependency on surface soil moisture was demonstrated. A theoretical framework was developed to explain these dependencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique case of a collegiate athlete who suffered an anterior cruciate ligament injury leading to the formation of a synovial cyst is described. The cyst, localized over the tibial tunnel, resulted from irritation caused by the removal of interference screws.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACKNOWLEDGEMENTS The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council, (ii) National Natural Science Foundation of China (Grant No. U1334201 and (iii) UK Engineering and Physical Sciences Research Council (Grant No. EP/G069441/1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Far-field stresses are those present in a volume of rock prior to excavations being created. Estimates of the orientation and magnitude of far-field stresses, often used in mine design, are generally obtained by single-point measurements of stress, or large-scale, regional trends. Point measurements can be a poor representation of far-field stresses as a result of excavation-induced stresses and geological structures. For these reasons, far-field stress estimates can be associated with high levels of uncertainty. The purpose of this thesis is to investigate the practical feasibility, applications, and limitations of calibrating far-field stress estimates through tunnel deformation measurements captured using LiDAR imaging. A method that estimates the orientation and magnitude of excavation-induced principal stress changes through back-analysis of deformation measurements from LiDAR imaged tunnels was developed and tested using synthetic data. If excavation-induced stress change orientations and magnitudes can be accurately estimated, they can be used in the calibration of far-field stress input to numerical models. LiDAR point clouds have been proven to have a number of underground applications, thus it is desired to explore their use in numerical model calibration. The back-analysis method is founded on the superposition of stresses and requires a two-dimensional numerical model of the deforming tunnel. Principal stress changes of known orientation and magnitude are applied to the model to create calibration curves. Estimation can then be performed by minimizing squared differences between the measured tunnel and sets of calibration curve deformations. In addition to the back-analysis estimation method, a procedure consisting of previously existing techniques to measure tunnel deformation using LiDAR imaging was documented. Under ideal conditions, the back-analysis method estimated principal stress change orientations within ±5° and magnitudes within ±2 MPa. Results were comparable for four different tunnel profile shapes. Preliminary testing using plastic deformation, a rough tunnel profile, and profile occlusions suggests that the method can work under more realistic conditions. The results from this thesis set the groundwork for the continued development of a new, inexpensive, and efficient far-field stress estimate calibration method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body size is a key determinant of metabolic rate, but logistical constraints have led to a paucity of energetics measurements from large water-breathing animals. As a result, estimating energy requirements of large fish generally relies on extrapolation of metabolic rate from individuals of lower body mass using allometric relationships that are notoriously variable. Swim-tunnel respirometry is the ‘gold standard’ for measuring active metabolic rates in water-breathing animals, yet previous data are entirely derived from body masses <10 kg – at least one order of magnitude lower than the body masses of many top-order marine predators. Here, we describe the design and testing of a new method for measuring metabolic rates of large water-breathing animals: a c. 26 000 L seagoing ‘mega-flume’ swim-tunnel respirometer. We measured the swimming metabolic rate of a 2·1-m, 36-kg zebra shark Stegostoma fasciatum within this new mega-flume and compared the results to data we collected from other S. fasciatum (3·8–47·7 kg body mass) swimming in static respirometers and previously published measurements of active metabolic rate measurements from other shark species. The mega-flume performed well during initial tests, with intra- and interspecific comparisons suggesting accurate metabolic rate measurements can be obtained with this new tool. Inclusion of our data showed that the scaling exponent of active metabolic rate with mass for sharks ranging from 0·13 to 47·7 kg was 0·79; a similar value to previous estimates for resting metabolic rates in smaller fishes. We describe the operation and usefulness of this new method in the context of our current uncertainties surrounding energy requirements of large water-breathing animals. We also highlight the sensitivity of mass-extrapolated energetic estimates in large aquatic animals and discuss the consequences for predicting ecosystem impacts such as trophic cascades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body size is a key determinant of metabolic rate, but logistical constraints have led to a paucity of energetics measurements from large water-breathing animals. As a result, estimating energy requirements of large fish generally relies on extrapolation of metabolic rate from individuals of lower body mass using allometric relationships that are notoriously variable. Swim-tunnel respirometry is the ‘gold standard’ for measuring active metabolic rates in water-breathing animals, yet previous data are entirely derived from body masses <10 kg – at least one order of magnitude lower than the body masses of many top-order marine predators. Here, we describe the design and testing of a new method for measuring metabolic rates of large water-breathing animals: a c. 26 000 L seagoing ‘mega-flume’ swim-tunnel respirometer. We measured the swimming metabolic rate of a 2·1-m, 36-kg zebra shark Stegostoma fasciatum within this new mega-flume and compared the results to data we collected from other S. fasciatum (3·8–47·7 kg body mass) swimming in static respirometers and previously published measurements of active metabolic rate measurements from other shark species. The mega-flume performed well during initial tests, with intra- and interspecific comparisons suggesting accurate metabolic rate measurements can be obtained with this new tool. Inclusion of our data showed that the scaling exponent of active metabolic rate with mass for sharks ranging from 0·13 to 47·7 kg was 0·79; a similar value to previous estimates for resting metabolic rates in smaller fishes. We describe the operation and usefulness of this new method in the context of our current uncertainties surrounding energy requirements of large water-breathing animals. We also highlight the sensitivity of mass-extrapolated energetic estimates in large aquatic animals and discuss the consequences for predicting ecosystem impacts such as trophic cascades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Verfahrens- und Systemtechnik, Dissertation, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La culture sous abris avec des infrastructures de type grands tunnels est une nouvelle technologie permettant d’améliorer la production de framboises rouges sous des climats nordiques. L’objectif principal de ce projet de doctorat était d’étudier les performances de ces technologies (grands tunnels vs. abris parapluie de type Voen, en comparaison à la culture en plein champ) et leur effets sur le microclimat, la photosynthèse, la croissance des plantes et le rendement en fruits pour les deux types de framboisiers non-remontants et remontants (Rubus idaeus, L.). Puisque les pratiques culturales doivent être adaptées aux différents environnements de culture, la taille d’été (pour le cultivar non-remontant), l’optimisation de la densité des tiges (pour le cultivar remontant) et l’utilisation de bâches réfléchissantes (pour les deux types des framboisiers) ont été étudiées sous grands tunnels, abris Voen vs. en plein champ. Les plants cultivés sous grands tunnels produisent en moyenne 1,2 et 1,5 fois le rendement en fruits commercialisables que ceux cultivés sous abri Voen pour le cv. non-remontant ‘Jeanne d’Orléans’ et le cv. remontant ‘Polka’, respectivement. Comparativement aux framboisiers cultivés aux champs, le rendement en fruits des plants sous grands tunnels était plus du double pour le cv. ‘Jeanne d’Orléans’ et près du triple pour le cv. ‘Polka’. L’utilisation de bâches réfléchissantes a entrainé un gain significatif sur le rendement en fruits de 12% pour le cv. ‘Jeanne d’Orléans’ et de 17% pour le cv. ‘Polka’. La taille des premières ou deuxièmes pousses a significativement amélioré le rendement en fruits du cv. ‘Jeanne d’Orléans’ de 26% en moyenne par rapport aux framboisiers non taillés. Des augmentations significatives du rendement en fruits de 43% et 71% du cv. ‘Polka’ ont été mesurées avec l’accroissement de la densité à 4 et 6 tiges par pot respectivement, comparativement à deux tiges par pot. Au cours de la période de fructification du cv. ‘Jeanne d’Orléans’, les bâches réfléchissantes ont augmenté significativement la densité de flux photonique photosynthétique (DFPP) réfléchie à la canopée inférieure de 80% en plein champ et de 60% sous grands tunnels, comparativement à seulement 14% sous abri Voen. Durant la saison de fructification du cv. ‘Polka’, un effet positif de bâches sur la lumière réfléchie (jusqu’à 42%) a été mesuré seulement en plein champ. Dans tous les cas, les bâches réfléchissantes n’ont présenté aucun effet significatif sur la DFPP incidente foliaire totale et la photosynthèse. Pour le cv. ‘Jeanne d’Orléans’, la DFPP incidente sur la feuille a été atténuée d’environ 46% sous le deux types de revêtement par rapport au plein champ. Par conséquent, la photosynthèse a été réduite en moyenne de 43% sous grands tunnels et de 17% sous abris Voen. Des effets similaires ont été mesurés pour la DFPP incidente et la photosynthèse avec le cv. Polka. En dépit du taux de photosynthèse des feuilles individuelles systématiquement inférieur à ceux mesurés pour les plants cultivés aux champs, la photosynthèse de la plante entière sous grands tunnels était de 51% supérieure à celle observée au champ pour le cv. ‘Jeanne d’Orléans’, et 46% plus élevée pour le cv. ‘Polka’. Ces résultats s’expliquent par une plus grande (près du double) surface foliaire pour les plants cultivés sous tunnels, qui a compensé pour le plus faible taux de photosynthèse par unité de surface foliaire. Les températures supra-optimales des feuilles mesurées sous grands tunnels (6.6°C plus élevé en moyenne que dans le champ), ainsi que l’atténuation de la DFPP incidente (env. 43%) par les revêtements de tunnels ont contribué à réduire le taux de photosynthèse par unité de surface foliaire. La photosynthèse de la canopée entière était étroitement corrélée avec le rendement en fruits pour les deux types de framboisiers rouges cultivés sous grands tunnels ou en plein champ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The purpose of this paper was to review the effectiveness of telephone interviewing for capturing data and to consider in particular the challenges faced by telephone interviewers when capturing information about market segments. Design/methodology/approach The platform for this methodological critique was a market segment analysis commissioned by Sport Wales which involved a series of 85 telephone interviews completed during 2010. Two focus groups involving the six interviewers involved in the study were convened to reflect on the researchers’ experiences and the implications for business and management research. Findings There are three principal sets of findings. First, although telephone interviewing is generally a cost-effective data collection method, it is important to consider both the actual costs (i.e. time spent planning and conducting interviews) as well as the opportunity costs (i.e. missed appointments, “chasing participants”). Second, researchers need to be sensitised to and sensitive to the demographic characteristics of telephone interviewees (insofar as these are knowable) because responses are influenced by them. Third, the anonymity of telephone interviews may be more conducive for discussing sensitive issues than face-to-face interactions. Originality/value The present study adds to this modest body of literature on the implementation of telephone interviewing as a research technique of business and management. It provides valuable methodological background detail about the intricate, personal experiences of researchers undertaking this method “at a distance” and without visual cues, and makes explicit the challenges of telephone interviewing for the purposes of data capture.