845 resultados para Secure Authentication for Broadcast (DNP3-SAB)
Resumo:
We consider the problem of secure transmission in two-hop amplify-and-forward untrusted relay networks. We analyze the ergodic secrecy capacity (ESC) and present compact expressions for the ESC in the high signal-to-noise ratio regime. We also examine the impact of large scale antenna arrays at either the source or the destination. For large antenna arrays at the source, we confirm that the ESC is solely determined by the channel between the relay and the destination. For very large antenna arrays at the destination, we confirm that the ESC is solely determined by the channel between the source and the relay.
Resumo:
This paper proposes millimeter wave (mmWave) mobile broadband for achieving secure communication in downlink cellular network. Analog beamforming with phase shifters is adopted for the mmWave transmission. The secrecy throughput is analyzed based on two different transmission modes, namely delay-tolerant transmission and delay-limited transmission. The impact of large antenna arrays at the mmWave frequencies on the secrecy throughput is examined. Numerical results corroborate our analysis and show that mmWave systems can enable significant secrecy improvement. Moreover, it is indicated that with large antenna arrays, multi-gigabit per second secure link at the mmWave frequencies can be reached in the delay-tolerant transmission mode and the adverse effect of secrecy outage vanishes in the delay-limited transmission mode.
Resumo:
In this paper, we study the information-theoretical security of a downlink multiuser cooperative relaying network with multiple intermediate amplify-and-forward (AF) relays, where there exist multiple eavesdroppers which can overhear the message. To prevent the wiretap and strength the network security, we select one best relay and user pair, so that the selected user can receive the message from the base station assisted by the selected relay. The relay and user selection is performed by maximizing the ratio of the received signal-to-noise ratio (SNR) at the user to the eavesdroppers, which is based on both the main and eavesdropper links. For the considered system, we derive the closed-form expression of the secrecy outage probability, and provide the asymptotic expression in high main-to-eavesdropper ratio (MER) region. From the asymptotic analysis, we can find that the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.
Resumo:
In this paper, we examine a novel approach to network security against passive eavesdroppers in a ray-tracing model and implement it on a hardware platform. By configuring antenna array beam patterns to transmit the data to specific regions, it is possible to create defined regions of coverage for targeted users. By adapting the antenna configuration according to the intended user’s channel state information, this allows the vulnerability of the physical regions to eavesdropping to be reduced. We present the application of our concept to 802.11n networks where an antenna array is employed at the access point. A range of antenna array configurations are examined by simulation and then realized using the Wireless Open-Access Research Platform(WARP)
Resumo:
We present a novel approach to network security against passive eavesdroppers by employing a configurable beam-forming technique to create tightly defined regions of coverage for targeted users. In contrast to conventional encryption methods, our security scheme is developed at the physical layer by configuring antenna array beam patterns to transmit the data to specific regions. It is shown that this technique can effectively reduce vulnerability of the physical regions to eavesdropping by adapting the antenna configuration according to the intended user's channel state information. In this paper we present the application of our concept to 802.11n networks where an antenna array is employed at the access point, and consider the issue of minimizing the coverage area of the region surrounding the targeted user. A metric termed the exposure region is formally defined and used to evaluate the level of security offered by this technique. A range of antenna array configurations are examined through analysis and simulation, and these are subsequently used to obtain the optimum array configuration for a user traversing a coverage area.
Resumo:
This paper proposes relay selection in order to increase the physical layer security in multiuser cooperative relay networks with multiple amplify-and-forward (AF) relays, in the presence of multiple eavesdroppers. To strengthen the network security against eavesdropping attack, we present three criteria to select the best relay and user pair. Specifically, criterion I and II study the received signal-to-noise ratio (SNR) at the receivers, and perform the selection by maximizing the SNR ratio of the user to the eavesdroppers. To this end, criterion I relies on both the main and eavesdropper links, while criterion II relies on the main links only. Criterion III is the standard max-min selection criterion,
which maximizes the minimum of the dual-hop channel gains of main links. For the three selection criteria, we examine the system secrecy performance by deriving the analytical expressions for the secrecy outage probability. We also derive the asymptotic analysis for the secrecy outage probability with high main-to eavesdropper ratio (MER). From the asymptotic analysis, an interesting observation is reached: for each criterion, the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.
Resumo:
From the early 1900s, some psychologists have attempted to establish their discipline as a quantitative science. In using quantitative methods to investigate their theories, they adopted their own special definition of measurement of attributes such as cognitive abilities, as though they were quantities of the type encountered in Newtonian science. Joel Michell has presented a carefully reasoned argument that psychological attributes lack additivity, and therefore cannot be quantities in the same way as the attributes of classical Newtonian physics. In the early decades of the 20th century, quantum theory superseded Newtonian mechanics as the best model of physical reality. This paper gives a brief, critical overview of the evolution of current measurement practices in psychology, and suggests the need for a transition from a Newtonian to a quantum theoretical paradigm for psychological measurement. Finally, a case study is presented that considers the implications of a quantum theoretical model for educational measurement. In particular, it is argued that, since the OECD’s Programme for International Student Assessment (PISA) is predicated on a Newtonian conception of measurement, this may constrain the extent to which it can make accurate comparisons of the achievements of different education systems.
Resumo:
In this paper, weconsider switch-and-stay combining (SSC) in two-way relay systems with two amplify-and-forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or timedivision broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed-form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signalto-noise ratio. It is shown that SSC can achieve the full diversity order in two-way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
The ability to exchange keys between users is vital in any wireless based security system. A key generation technique exploits the randomness of the wireless channel is a promising alternative to existing key distribution techniques, e.g., public key cryptography. In this paper a secure key generation scheme based on the subcarriers’ channel responses in orthogonal frequencydivision multiplexing (OFDM) systems is proposed. We first implement a time-variant multipath channel with its channel impulse response modelled as a wide sense stationary (WSS) uncorrelated scattering random process and demonstrate that each subcarrier’s channel response is also a WSS random process. We then define the X% coherence time as the time required to produce an X% correlation coefficient in the autocorrelation function (ACF) of each channel tap, and find that when all the channel taps have the same Doppler power spectrum, all subcarriers’ channel responses has the same ACF as the channel taps. The subcarrier’s channel response is then sampled every X% coherence time and quantized into key bits. All the key sequences’ randomness is tested using National Institute of Standards and Technology (NIST) statistical test suite and the results indicate that the commonly used sampling interval as 50% coherence time cannot guarantee the randomness of the key sequence.
Resumo:
Unlike the mathematical encryption and decryption adopted in the classical cryptographic technology at the higher protocol layers, it is shown that characteristics intrinsic to the physical layer, such as wireless channel propagation, can be exploited to lock useful information. This information then can be automatically unlocked using real time analog RF means. In this paper retrodirective array, RDA, technology for spatial encryption in the multipath environment is for the first time combined with the directional modulation, DM, method normally associated with free space secure physical layer communications. We show that the RDA can be made to operate more securely by borrowing DM concepts and that the DM enhanced RDA arrangement is suitable for use in a multipath environment.
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multi-antenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the cellular base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, we propose a new power transfer policy, namely, best power beacon (BPB) power transfer. To characterize the power transfer reliability of the proposed policy, we derive new closed-form expressions for the exact power outage probability and the asymptotic power outage probability with large antenna arrays at PBs. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), and 2) nearest receiver selection (NRS). To assess the secrecy performance, we derive new expressions for the secrecy throughput considering the two receiver selection schemes using the BPB power transfer policies. We show that secrecy performance improves with increasing densities of PBs and D2D receivers because of a larger multiuser diversity gain. A pivotal conclusion is reached that BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead.
Resumo:
Cloud computing is a technological advancementthat provide resources through internet on pay-as-you-go basis.Cloud computing uses virtualisation technology to enhance theefficiency and effectiveness of its advantages. Virtualisation isthe key to consolidate the computing resources to run multiple instances on each hardware, increasing the utilization rate of every resource, thus reduces the number of resources needed to buy, rack, power, cool, and manage. Cloud computing has very appealing features, however, lots of enterprises and users are still reluctant to move into cloud due to serious security concerns related to virtualisation layer. Thus, it is foremost important to secure the virtual environment.In this paper, we present an elastic framework to secure virtualised environment for trusted cloud computing called Server Virtualisation Security System (SVSS). SVSS provide security solutions located on hyper visor for Virtual Machines by deploying malicious activity detection techniques, network traffic analysis techniques, and system resource utilization analysis techniques.SVSS consists of four modules: Anti-Virus Control Module,Traffic Behavior Monitoring Module, Malicious Activity Detection Module and Virtualisation Security Management Module.A SVSS prototype has been deployed to validate its feasibility,efficiency and accuracy on Xen virtualised environment.
Resumo:
Goats’ milk is responsible for unique traditional products such as Halloumi cheese. The characteristics of Halloumi depend on the original features of the milk and on the conditions under which the milk has been produced such as feeding regime of the animals or region of production. Using a range of milk (33) and Halloumi (33) samples collected over a year from three different locations in Cyprus (A, Anogyra; K, Kofinou; P, Paphos), the potential for fingerprint VOC analysis as marker to authenticate Halloumi was investigated. This unique set up consists of an in-injector thermo desorption (VOCtrap needle) and a chromatofocusing system based on mass spectrometry (VOCscanner). The mass spectra of all the analyzed samples are treated by multivariate analysis (Principle component analysis and Discriminant functions analysis). Results showed that the highland area of product (P) is clearly identified in milks produced (discriminant score 67%). It is interesting to note that the higher similitude found on milks from regions “A” and “K” (with P being distractive; discriminant score 80%) are not ‘carried over’ on the cheeses (higher similitude between regions “A” and “P”, with “K” distinctive). Data have been broken down into three seasons. Similarly, the seasonality differences observed in different milks are not necessarily reported on the produced cheeses. This is expected due to the different VOC signatures developed in cheeses as part of the numerous biochemical changes during its elaboration compared to milk. VOC however it is an additional analytical tool that can aid in the identification of region origin in dairy products.
Resumo:
The key attributes of a smarter power grid include: pervasive interconnection of smart devices; extensive data generation and collection; and rapid reaction to events across a widely dispersed physical infrastructure. Modern telecommunications technologies are being deployed across power systems to support these monitoring and control capabilities. To enable interoperability, several new communications protocols and standards have been developed over the past 10 to 20 years. These continue to be refined, even as new systems are rolled out.
This new hyper-connected communications infrastructure provides an environment rich in sub-systems and physical devices that are attractive to cyber-attackers. Indeed, as smarter grid operations become dependent on interconnectivity, the communications network itself becomes a target. Consequently, we examine cyber-attacks that specifically target communications, particularly state-of-the-art standards and protocols. We further explore approaches and technologies that aim to protect critical communications networks against intrusions, and to monitor for, and detect, intrusions that infiltrate Smart Grid systems.