994 resultados para Scale [ca. 1:2,100,000]None
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.
Resumo:
Superconducting oxides of the Bi1.5Pb0.5(Ca, Sr)n+1CunO2n+4+δ series with n = 1, 2, 3 and 4 have been characterized. The superconducting transition temperature increases markedly with n up to n = 3, but the Tc of the n = 4 member is not much higher than that of the n = 3 member. The Tc does not change significantly in Bi2−xPbxCaSr2Cu2O8+δ with x (0.1 < x ≤ 0.5).
Resumo:
2007
Resumo:
2007
Resumo:
2007
Resumo:
2008
Resumo:
Neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) proteins are ubiquitin ligases, which attach ubiquitin moieties to their target proteins, a post-translational modification that is most commonly associated with protein degradation. Nedd4 ubiquitin ligases have been shown to down-regulate both potassium and sodium channels. In this study, we investigated whether Nedd4 ubiquitin ligases also regulate Ca(v) calcium channels. We expressed three Nedd4 family members, Nedd4-1, Nedd4-2, and WWP2, together with Ca(v)1.2 channels in tsA-201 cells. We found that Nedd4-1 dramatically decreased Ca(v) whole-cell currents, whereas Nedd4-2 and WWP2 failed to regulate the current. Surface biotinylation assays revealed that Nedd4-1 decreased the number of channels inserted at the plasma membrane. Western blots also showed a concomitant decrease in the total expression of the channels. Surprisingly, however, neither the Ca(v) pore-forming α1 subunit nor the associated Ca(v)β and Ca(v)α(2)δ subunits were ubiquitylated by Nedd4-1. The proteasome inhibitor MG132 prevented the degradation of Ca(v) channels, whereas monodansylcadaverine and chloroquine partially antagonized the Nedd4-1-induced regulation of Ca(v) currents. Remarkably, the effect of Nedd4-1 was fully prevented by brefeldin A. These data suggest that Nedd4-1 promotes the sorting of newly synthesized Ca(v) channels for degradation by both the proteasome and the lysosome. Most importantly, Nedd4-1-induced regulation required the co-expression of Ca(v)β subunits, known to antagonize the retention of the channels in the endoplasmic reticulum. Altogether, our results suggest that Nedd4-1 interferes with the chaperon role of Ca(v)β at the endoplasmic reticulum/Golgi level to prevent the delivery of Ca(v) channels at the plasma membrane.
Resumo:
Chironomids preserved in a sediment core from Lago di Origlio (416 m a.s.l.), a lake in the foreland of the Southern Swiss Alps, allowed quantitative reconstruction of Late Glacial and Early Holocene summer temperatures using a combined Swiss–Norwegian temperature inference model based on chironomid assemblages from 274 lakes. We reconstruct July air temperatures of ca. 10 °C between 17 300 and 16 000 cal yr BP, a rather abrupt warming to ca. 12.0 °C at ca. 16 500–16 000 cal yr BP, and a strong temperature increase at the transition to the Bølling/Allerød interstadial with average temperatures of about 14 °C. During the Younger Dryas and earliest Holocene similar temperatures are reconstructed as for the interstadial. The rather abrupt warming at 16 500–16 000 cal yr BP is consistent with sea-surface temperature as well as speleothem records, which indicate a warming after the end of Heinrich event 1 (sensu stricto) and before the Bølling/Allerød interstadial in southern Europe and the Mediterranean Sea. Pollen records from Origlio and other sites in southern Switzerland and northern Italy indicate an early reforestation of the lowlands 2000–1500 yr prior to the large-scale afforestation of Central Europe at the onset of the Bølling/Allerød period at ca. 14 700–14 600 cal yr BP. Our results suggest that these early afforestation processes in the formerly glaciated areas of northern Italy and southern Switzerland have been promoted by increasing temperatures.
Resumo:
L-type calcium channels are composed of a pore, alpha1c (Ca(V)1.2), and accessory beta- and alpha2delta-subunits. The beta-subunit core structure was recently resolved at high resolution, providing important information on many functional aspects of channel modulation. In this study we reveal differential novel effects of five beta2-subunits isoforms expressed in human heart (beta(2a-e)) on the single L-type calcium channel current. These splice variants differ only by amino-terminal length and amino acid composition. Single-channel modulation by beta2-subunit isoforms was investigated in HEK293 cells expressing the recombinant L-type ion conducting pore. All beta2-subunits increased open probability, availability, and peak current with a highly consistent rank order (beta2a approximately = beta2b > beta2e approximately = beta2c > beta2d). We show graded modulation of some transition rates within and between deep-closed and inactivated states. The extent of modulation correlates strongly with the length of amino-terminal domains. Two mutant beta2-subunits that imitate the natural span related to length confirm this conclusion. The data show that the length of amino termini is a relevant physiological mechanism for channel closure and inactivation, and that natural alternative splicing exploits this principle for modulation of the gating properties of calcium channels.
Resumo:
Availability of voltage-gated calcium channels (Cav) at the plasma membrane is paramount to maintaining the calcium homeostasis of the cell. It is proposed that the ubiquitylation/de-ubiquitylation balance regulates the density of ion channels at the cell surface. Voltage-gated calcium channels Cav1.2 have been found to be ubiquitylated under basal conditions both in vitro and in vivo. In a previous study, we have shown that Cav1.2 channels are ubiquitylated by neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4-1) ubiquitin ligases, but the identity of the counterpart de-ubiquitylating enzyme remained to be elucidated. Regarding sodium and potassium channels, it has been reported that the action of the related isoform Nedd4-2 is counteracted by the ubiquitin-specific protease (USP) 2-45. In this study, we show that USP 2-45 also de-ubiquitylates Cav channels. We co-expressed USPs and Cav1.2 channels together with the accessory subunits β2 and α2δ-1, in tsA-201 and HEK-293 mammalian cell lines. Using whole-cell current recordings and surface biotinylation assays, we show that USP2-45 specifically decreases both the amplitude of Cav currents and the amount of Cav1.2 subunits inserted at the plasma membrane. Importantly, co-expression of the α2δ-1 accessory subunit is necessary to support the effect of USP2-45. We further show that USP2-45 promotes the de-ubiquitylation of both Cav1.2 and α2δ-1 subunits. Remarkably, α2δ-1, but not Cav1.2 nor β2, co-precipitated with USP2-45. These results suggest that USP2-45 binding to α2δ-1 promotes the de-ubiquitylation of both Cav1.2 and α2δ-1 subunits, in order to regulate the expression of Cav1.2 channels at the plasma membrane.
Resumo:
Stimulation of LM5 cells with the phorbol ester 4$\beta$-phorbol 12-myristate 13-acetate (PMA), causes a 2-4 fold sensitization of hormonally-stimulated adenylyl cyclase (AC) activity. This effect is thought to be due to protein kinase C (PKC)-mediated phosphorylation of either G$\sb{\rm i}$ or the catalytic subunit of AC. PKC are components of the phosphatidylinositol-4,5-bisphosphate phospholipase C (PIP$\sb2$-PLC) pathway. The currently accepted model of this pathway is that its activation by an agonist results in the production of inositol 1,4,5-triphosphate (IP$\sb3$) which causes Ca$\sp{++}$ mobilization, and 1,2-diacylglycerols (DAG) which activate PKC. Based on this model, we predicted that stimulation of purinergic and muscarinic receptors with the agonists ATP and carbachol (CCh), respectively in the LM5 cells, should sensitize AC. Surprisingly we found that only stimulation of the purinergic receptors in these cells caused a sensitization of PGE$\sb1$-stimulated AC measured in cell-free assays.^ We hypothesized that ATP-and CCh-stimulated differential DAG production contributes to the effectiveness of these two agonists to sensitize PGE$\sb1$-stimulated AC activity. To test this hypothesis directly, we performed a combined high-performance liquid chromatography and gas-liquid chromatography analysis of the DAG produced in the LM5 cells in response to stimulation with ATP and CCh.^ We found that both ATP and CCh increased levels of 23 species of DAG. Relative to the control levels (0.261 nmol DAG/100 nmol phospholipid) the CCh-induced increase in DAG levels was 280% (0.738 $\pm$ 0.051 nmol DAG/100 nmol phospholipid) whereas the ATP-induced levels increased 180% (0.441 t 0.006 nmol DAG/100 nmol phospholipid). Neither agonist created new species or eliminated the existing ones. The major species which comprised $\approx$50% of the total cellular DAG in all of the groups were 16:0-18:1, 18:0-18:1, 18:1-18:1, and 18:0-20:4. CCh was more effective than ATP at stimulating these major DAG species.^ It is concluded that factor(s) other than DAG contribute(s) to the differences between ATP-and CCh-sensitization of PGE$\sb1$-stimulated AC activity in the LM5 cells. ^