976 resultados para SURFACE AIR
Resumo:
DRIFTS, TGA and resistance measurements have been used to study the mechanism of water and hydrogen interaction accompanied by a resistance change (sensor signal) of blank and Pd doped SnO2. It was found that a highly hydroxylated surface of blank SnO2 reacts with gases through bridging hydroxyl groups, whereas the Pd doped materials interact with hydrogen and water through bridging oxygen. In the case of blank SnO2 the sensor signal maximum towards H-2 in dry air (R-0/R-g) is observed at similar to 345 degrees C, and towards water, at similar to 180 degrees C, which results in high selectivity to hydrogen in the presence of water vapors (minor humidity effect). In contrast, on doping with Pd the response to hydrogen in dry air and to water occurred in the same temperature region (ca. 140 degrees C) leading to low selectivity with a high effect of humidity. An increase in water concentration in the gas phase changes the hydrogen interaction mechanism of Pd doped materials, while that of blank SnO2 is unchanged. The interaction of hydrogen with the catalyst doped SnO2 occurs predominantly through hydroxyl groups when the volumetric concentration of water in the gas phase is higher than that of H-2 by a factor of 1000.
Developing a simple, rapid method for identifying and monitoring jellyfish aggregations from the air
Resumo:
Within the marine environment, aerial surveys have historically centred on apex predators, such as pinnipeds, cetaceans and sea birds. However, it is becoming increasingly apparent that the utility of this technique may also extend to subsurface species such as pre-spawning fish stocks and aggregations of jellyfish that occur close to the surface. In light of this, we tested the utility of aerial surveys to provide baseline data for 3 poorly understood scyphozoan jellyfish found throughout British and Irish waters: Rhizostoma octopus, Cyanea capillata and Chrysaora hysoscella. Our principal objectives were to develop a simple sampling protocol to identify and quantify surface aggregations, assess their consistency in space and time, and consider the overall applicability of this technique to the study of gelatinous zooplankton. This approach provided a general understanding of range and relative abundance for each target species, with greatest suitability to the study of R. octopus. For this species it was possible to identify and monitor extensive, temporally consistent and previously undocumented aggregations throughout the Irish Sea, an area spanning thousands of square kilometres. This finding has pronounced implications for ecologists and fisheries managers alike and, moreover, draws attention to the broad utility of aerial surveys for the study of gelatinous aggregations beyond the range of conventional ship-based techniques.
Resumo:
The formation of various phases during boronizing of silicided molybdenum substrates (MoSi2/Mo) was investigated. Boronizing treatments were conducted in molten salts under an inert gas atmosphere in the 700-1000 degrees C temperature range for 3-7 h. Depending on the process type (non-current or electrochemical) and molten salt temperature, the formation of different boride phases (MoB, Mo2B5, MoB2, MoB4) was observed. At the same time, substantial oxidation of the bulk molybdenum disilicide phase (MoSi2) to the Mo5Si3 phase was observed in non-current boronizing. The oxidation resistance of the coatings was investigated by the weight change in an air-water (2.3 vol.%) mixture at a temperature of 500 degrees C for a period up to 700 h. Results indicated that a two-phase microstructure consisting of the MoSi2, matrix phase with 12-15 wt.% of the MoB4 phase greatly improved the oxidation resistance of the molybdenum substrates. The weight gain rate observed was 6.5 center dot 10(-4) mg/cm(2) h. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atmosphere in the 850-1050 degrees C temperature range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide (MoSi2, Mo5Si3) phases, formed on the surface of Mo plates, was confirmed by X-ray diffraction analysis. The distribution of elements was determined by means of wavelength dispersive spectroscopy (WDS) spectra of the surface and line-scan analyses from surface to interior. Depending on the process type (diffusional or electrochemical) and temperature, the thickness of the protective layers formed on the substrate ranged from 6 to 40 gm. The oxidation resistance of obtained phases was investigated in an air-water mixture in the temperature range of 500-700 degrees C for a period up to 400 h. An improved oxidation behavior of coated plates in comparison with that of pure molybdenum was observed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A wide range of organic pollutants can be destroyed by semiconductor photocatalysis using titania. The purification of water and air contaminated with organic pollutants has been investigated by semiconductor photocatalysis for many years and in attempts to improve the purification rate platinum and palladium have been deposited, usually as fine particles, on the titania surface. Such deposits are expected to improve the rate of reduction of oxygen and so reduce the probability of electron-hole recombination and increase the overall rate of the reaction. The effectiveness of the deposits is reviewed here and appears very variable with reported rate enhancement factors ranging from 8 to 0.1. Semiconductor photocatalysis can be used to purify air (at temperatures > 100 degrees C) and Pt deposits can markedly improve the overall rate of mineralisation. However, volatile organic compounds containing an heteroatom can deactivate the photocatalyst completely and irreversibly. Factors contributing to the success of the processes are considered. The use of chloro-Pt(IV)-titania and other chloro-platinum group metals-titania complexes as possible visible light sensitisers for water and air purification is briefly reviewed.
Resumo:
This paper investigates the influence of three fundamentally different durability enhancing products, viz. microsilica, controlled permeability formwork and silane, on some of the physical proper ties of near surface concrete. Microsilica (silica fume) is a pozzolan, controlled permeability formwork (CPF) is used to provide a free draining surface to a concrete form, while silane is a surface treatment applied to hardened concrete to reduce the ingress of water. Comparisons are made between the products when used individually and used in conjunction with each other, with a view to assessing whether the use of combinations of products may be desirable to improve the durability of concrete in certain circumstances. The effect of these materials on various durability parameters, such as freeze-thaw deterioration, carbonation resistance and chloride ingress, is considered in terms of their effect on permeation properties and surface strength. The results indicated that a combination of silane and CPF produces concrete with very low air permeability and sorptivity values. The influence of microsilica was more pronounced in increasing the surface strength of concrete.
Resumo:
Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.
Resumo:
It has long been accepted that thermal and moisture regimes within stonework exert a major influence upon patterns of salt movement and, subsequently, the type and severity of salt-induced decay. For example, it is suggested that slow drying is more likely to bring dissolved salts to the surface, whereas rapid drying could result in the retention of some salt at or near the frequent wetting depth. In reality however, patterns of heating, cooling and surface wetting regimes that drive them – are complex and inconsistent responses to a wide range of environmental controls. As a first step to understanding the complexity of these relationships, this paper reports a series of experiments within a climatic cabinet designed to replicate the effects of short-term temperature fluctuations on the surface and sub-surface temperature regimes of a porous Jurassic limestone, and how they are influenced by surface wetting, ambient temperature and surface airflow. Preliminary results confirm the significance of very steep temperature/stress gradients within the outer centimetre or less of exposed stone under short-duration cycles of heating and cooling. This is important because this is the zone in which many stone decay processes, particularly salt weathering, operate, these processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example,
trigger these fluctuations on numerous occasions over a day. The data also indicate that there are complex patterns of temperature reversal with depth that are influenced in their intensity and location by surface wetting and moisture penetration, airflow across the surface and ambient air temperature. The presence of multiple temperature reversals and their variation over the course of heating and cooling phases belies previous assumtions of smooth, exponential increases and decreases in subsurface temperatures in response, for example to diurnal patterns of heating and cooling
Resumo:
In recent years unmanned vehicles have grown in popularity, with an ever increasing number of applications in industry, the military and research within air, ground and marine domains. In particular, the challenges posed by unmanned marine vehicles in order to increase the level of autonomy include automatic obstacle avoidance and conformance with the Rules of the Road when navigating in the presence of other maritime traffic. The USV Master Plan which has been established for the US Navy outlines a list of objectives for improving autonomy in order to increase mission diversity and reduce the amount of supervisory intervention. This paper addresses the specific development needs based on notable research carried out to date, primarily with regard to navigation, guidance, control and motion planning. The integration of the International Regulations for Avoiding Collisions at Sea within the obstacle avoidance protocols seeks to prevent maritime accidents attributed to human error. The addition of these critical safety measures may be key to a future growth in demand for USVs, as they serve to pave the way for establishing legal policies for unmanned vessels.
Resumo:
Time-resolved DRIFTS, MS, and resistance measurements were used to study the interaction of undoped and Pd-doped SnO2 with H-2 in air and argon at 300 degrees C. Using first-order kinetics, we compare the time constants for the resistance drop and its partial recovery with those of the surface hydroxyl evolution and water formation in the gas phase upon exposure to hydrogen. In the case of the undoped oxide, resistance and bridging hydroxyls (BOHs) evolve similarly, manifesting a fast main drop followed by recovery at a similar rate. The rate of water formation for this material was found to be much slower than that of the main drop in both the resistance and BOHs. In contrast, the resistance change for SnO2-Pd appeared to be similar to that of water formation, and no correlation was found between the evolution of resistance and surface OHs. Isotopic exchange on both materials revealed that water formation occurs via fast and slow hydrogen transfer to surface oxygen species. While the former originates from just-adsorbed hydrogen, the latter appears to proceed from the preadsorbed OHs. Both surfaces exhibit close interaction between chemisorbed oxygen and existing bridging OH groups, indicating that the latter is an intermediate in the hydrogen oxidation and generation of donor states on the surface.
Resumo:
Thermal barrier coatings (TBCs) are widely adopted to protect mechanical components in gas turbine engines operating at high temperature. Basically, the surface temperature of these components must be low enough to retain material properties within acceptable bounds and to extend component life. From this standpoint, air plasma-sprayed (APS) ceria and yttria co-stabilized zirconia (CYSZ) is particularly promising because it provides enhanced thermal insulation capabilities and resistance to hot corrosion. However, essential mechanical properties, such as hardness and Young's modulus, have been less thoroughly investigated. Knowledge of Young's modulus is of concern because it has a significant effect on strain tolerance and stress level and, hence, on durability. The focus of the present study was to determine the mechanical properties of APS CYSZ coatings. In particular, X-ray diffraction (XRD) is adopted for phase analysis of powders and as-sprayed coatings. In addition, scanning electron microscopy (SEM) and image analysis (IA) are employed to explore coating microstructure and porosity. Finally, the Young's modulus of the coating is determined using nanoindentation and a resonant method. The results obtained are then discussed and a cross-check on their consistency is carried out by resorting to a micromechanical model. © 2010 Blackwell Publishing Ltd.
Resumo:
A prism coupling arrangement is used to excite surface plasmons at the surface of a thin silver aim and a photon scanning tunnelling microscope is used to detect the evanescent field above the silver surface. Excitation of the silver/ air mode of interest is performed at lambda(1) = 632 . 8 nm using a tightly focused beam, while the control of the tip is effected by exciting a counter-propagating surface plasmon field at a different wavelength. lambda(2) = 543 . 5 nm, using an unfocused beam covering a macroscopic area. Propagation of the red surface plasmon is evidenced by an exponential tail extending away from the launch site, but this feature is abruptly truncated if the surface plasmon encounters the edge of the silver film - there is no specularly reflected 'beam'. Importantly, the radiative decay of the surface mode at the film edge is observable only at larger tip-sample separations, emphasizing the importance of accessing the mesoscopic regime.
Resumo:
Thin, oxidised Al films grown an one face of fused silica prisms are exposed. tinder ambient conditions, to single shots from an excimer laser operating at wavelength 248 nm. Preliminary characterisation of the films using attenuated total reflection yields optical and thickness data for the Al and Al oxide layers; this step facilitates the subsequent, accurate tuning of the excimer laser pulse to the: surface plasmon resonance at the Al/(oxide)/air interface and the calculation of the fluence actually absorbed by the thin film system. Ablation damage is characterised using scanning electron, and atomic force microscopy. When the laser pulse is incident, through the prism on the sample at less than critical angle, the damage features are molten in nature with small islands of sub-micrometer dimension much in evidence, a mechanism of film melt-through and subsegment blow-off due to the build up of vapour pressure at the substrate/film interface is appropriate. By contrast, when the optical input is surface plasmon mediated, predominately mechanical damage results with the film fragmenting into large flakes of dimensions on the order of 10 mu m. It is suggested that the ability of surface plasmons to transport energy leads to enhanced, preferential absorption of energy at defect sites causing stress throughout the film which exceeds the ultimate tensile stress for the film: this in turn leads to film break-up before melting can onset. (C) 1998 Elsevier Science B.V.
Resumo:
The spectroscopic capability of the photon scanning tunneling microscope is exploited to study directly the launch and propagation of surface plasmons on thin silver films. Two input beams, of different wavelength, are incident through the prism in a prism-Ag film-air-fibre tip system. Both excite surface plasmons at the Ag-air interface and light of both wavelengths is coupled into the fibre probe via the respective surface plasmon evanescent fields. One laser beam is used for instrument control. The second, or probe beam is tightly focused on the sample, within the area of the unfocused or control beam, giving a well-defined and symmetrical, confined surface plasmon launch site. However, the image at the probe wavelength is highly asymmetrical in section with an exponential tail extending beyond one side of the launch site. This demonstrates in a very direct fashion;the propagation of surface plasmons; a propagation length of similar to 11.7 mu m is measured at a probe wavelength of 543.5 nm. On rough Ag films the excitation of localised scattering centres is also observed in addition to the launch of delocalised surface plasmons.
Resumo:
The well known advantages of using surface plasmons, in particular the high sensitivity to surface adsorbates, are nearly always compromised in practice by the use of monochromatic excitation and the consequent lack of proper spectroscopic information. This limitation arises from the angle/wavelength selective nature of the surface plasmon resonance. The work described here uses an elegant broadband excitation/decay scheme in a substrate(silica)-grating profiled photoresist-Ag film geometry. Laser radiation of wavelength 488 nm, incident through the silica substrate, excites by near-field coupling a broad band of surface plasmons at the photoresist-Ag interface within the spectral range of the photoresist fluorescence. With a judicious choice of grating period this mode can cross-couple to the mode supported at the Ag-air interface. This latter mode can, in turn, couple out to light by virtue of the same grating profile. The spectral distribution of the light emitted due to this three-step process has been studied as a function of the angle of emission and depth of the grating profiled surface for each polarization. It is found that the optimum emission efficiency occurs with a groove depth in the region of 65 nm. This is considerably greater than the optimum depth of 40 nm required for surface plasmon-photon coupling at a Ag-air interface or, in other words, for the last step of the process in isolation.