320 resultados para SUBFAMILIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Desmoscolecida from the continental slope and the deep-sea bottom (59-4354 m) off the Portuguese and Moroccan coasts are described. 18 species were identified: Desmoscolex bathyalis sp. nov., D. chaetalatus sp. nov., D. eftus sp. nov., D. galeatus sp. nov., D. lapilliferus sp. nov., D. longisetosus Timm, 1970, D. lorenzeni sp. nov., D. perspicuus sp. nov., D. pustulatus sp. nov., Quadricoma angulocephala sp. nov., Q. brevichaeta sp. nov., Q. iberica sp. nov., Q. loricatoides sp. nov., Tricoma atlantica sp. nov., T. bathycola sp. nov., T. beata sp. nov., T. incomposita sp. nov., T. meteora sp. nov., T. mauretania sp. nov. 2. The following new terms are proposed: "Desmos" (ring-shaped concretions consisting of secretion and concretion particles), "desmoscolecoid" and "tricomoid" arrangement of the somatic setae, "regelmaessige" (regular), "unregelmaessige" (irregular), "vollstaendige" (complete) and "unvollstaendige" (incomplete) arrangement of somatic seta (variations in the desmoscolecoid arrangement of the somatic setae). The length of the somatic setae is given in the setal pattern. 3. Desmoscolecida identical as to genus and species exhibit no morphological differences even if forthcoming from different bathymetrical zones (deep sea, sublitoral, litoral) or different environments (marin, freshwater, coastal subsoil water, terrestrial environment). 4. Lorenzen's (1969) contention that thearrangement of the somatic setae is more significant for the natural relationships between the different genera of Desmoscolecida than other characteristics is further confirmed. Species with tricomoid arrangement of somatic setae are regarded as primitive, species with desmoscolecoid arrangement of somatic setae are regarded as more advanced. 5. Three new genus are established: Desmogerlachia gen. nov., Desmolorenzenia gen. nov. and Desmofimmia gen. nov. - Protricoma Timm, 1970 is synonymized with Paratricoma Gerlach, 1964 and Protodesmoscolex Timm, 1970 is synonymized with Desmoscolex Claparede,1863. 6. Checklists of all species of the order Desmoscolecida and keys to species of the subfamilies Tricominae and Desmoscolecinae are provided. 7. The following nomenclatorial changes are suggested: Desmogerlachia papillifer (Gerlach, 1956) comb. nov., D .pratensis (Lorenz, 1969) comb. nov., Desmotimmia mirabilis (Timm, 1970) comb. nov., Paratricoma squamosa (Timm, 1970) comb. nov., Desmolorenzenia crassicauda (Timm, 1970) comb. nov., D. desmoscolecoides (Timm, 1970) comb. nov., D. eurycricus (Filipjev, 1922) comb. nov., D. frontalis (Gerlach, 1952) comb. nov., D. hupferi (Steiner, 1916) comb. nov., D. longicauda (Timm, 1970) comb. nov., D. parva (Timm, 1970) comb. nov., D. platycricus (Steiner, 1916) comb. nov., D. viffata (Lorenzen, 1969) comb. nov., Desmoscolex anfarcficos (Timm, 1970) comb. nov.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbonic anhydrases are enzymes that are ubiquitously found in all organisms that are engaged in catalyzing the hydration of carbon dioxide to form bicarbonate and proton and vice versa. They are crucial in the process of respiration, bone resorption, pH regulation, ion transport, and photosynthesis in plants. Out of the five classes of carbonic anhydrase α, β, γ, δ, ζ this study focused in the α carbonic anhydrases. This class of CAs constitute of 16 subfamilies in mammals that include 3 non-active enzymes known as Carbonic Anhydrase Related Proteins. The inactiveness of these enzymes is due to the loss of one or more Histidine residues in the active site. This thesis was conducted based on the aim of studying evolutionary analysis of carbonic anhydrase sequences from organisms spanning from the Cambrian age. It was carried out in two phases. The first phase was the sequence collection, which involved many biological sequence databases as a source. The scope of this segment included sequence alignments and analysis of the sequence manually and in an automated form incorporating few analysis tools. The second Phase was phylogenetic analysis and exploring the subcellular location of the proteins, which was key for the evolutionary analysis. Through the medium of the methods conducted with respect to the phases mentioned above, it was possible to accomplish the desired result. Certain thought-provoking sequences were come across and analyzed thoroughly. Whereas, Phylogenetics showed interesting results to bolster previous findings and new findings as well which lay bedrock for future intensified studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After having pointed out their distribution into several subfamilies, genera, and sub-genera of Pyramidellidae, this note describes 44 species of this family. Forty-two were collected by the author in the beach sands at Pho-Hai, near Phan-Thiet (South-Vietnam) and two were dredged off Phan-Thiet by the Nha-Trang Oceanographic Institute. Among these species twenty-one are new: Cossmannica champaensis, Odostomia (Odostomia) chamorum, O. (Megastomia) elata, O. (Megastomia) binhdinhensis, 0. (Megastomia) gestroides, O. (Jodanula) megembryon, Pyrgulina (Standeniella) difficilis, P. (Parthenina) monicae, P. (Pyrgulina) phohaiensis, Chrysallida phanthietina, Egilina gigantea, E. babellina, E. (Numaegilina) ventricosa, Babella cylindrica, B. crassicostata, Miralda franciscae, Turbonilla barthelemyi, T. (Asmunda) secta, Pyrgiscus infantilis, Careliopsis sublaevis, Cingulina inaequalis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously identified two secreted glutathione S-transferases (GST) expressed in the pharyngeal gland cell of Bursaphelenchus xylophilus, which are upregulated post infection of the host. This study examines the functional role of GSTs in B. xylophilus biology. We analysed the expression profiles of all predicted GSTs in the genome and the results showed that they belong to kappa and cytosolic subfamilies and the majority are upregulated post infection of the host. A small percentage is potentially secreted and none is downregulated post infection of the host. One secreted protein was confirmed as a functional GST and is within a cluster that showed the highest expression fold change in infection. This enzyme has a protective activity that may involve host defences, namely in the presence of terpenoid compounds and peroxide products. These results suggest that GSTs secreted into the host participate in the detoxification of host-derived defence compounds and enable successful parasitism.