960 resultados para SPEED SEMICONDUCTOR-LASERS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tailoring properties of materials by femtosecond laser processing has been proposed in the last decade as a powerful approach for technological applications, ranging from optics to biology. Although most of the research output in this field is related to femtosecond laser processing of single either organic or inorganic materials, more recently a similar approach has been proposed to develop advanced hybrid nanomaterials. Here, we report results on the use of femtosecond lasers to process hybrid nanomaterials, composed of polymeric and glassy matrices containing metal or semiconductor nanostructures. We present results on the use of femtosecond pulses to induce Cu and Ag nanoparticles in the bulk of borate and borosilicate glasses, which can be applied for a new generation of waveguides. We also report on 3D polymeric structures, fabricated by two-photon polymerization, containing Au and ZnO nanostructures, with intense two-photon fluorescent properties. The approach based on femtosecond laser processing to fabricate hybrid materials containing metal or semiconductor nanostructures is promising to be exploited for optical sensors and photonics devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"This activity was supported by the Defense Advanced Research Projects Agency and the National Bureau of Standards."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laser diode (LD) is a unique light source that can efficiently produce all radiant energy within the narrow wavelength range used most effectively by a photosynthetic microorganism. We have investigated the use of a single type of LID for the cultivation of the well-studied anoxygenic photosynthetic bacterium, Rhodobacter capsulatus (Rb. capsulatus). An array of vertical-cavity surface-emitting lasers (VCSELs) was driven with a current of 25 mA, and delivered radiation at 860 nm with 0.4 nm linewidth. The emitted light was found to be a suitable source of radiant energy for the cultivation of Rb. capsulatus. The dependence of growth rate on incident irradiance was quantified. Despite the unusual nearly monochromatic light source used in these experiments, no significant changes in the pigment composition and in the distribution of bacteriochlorophyll between LHII and LHI-RC were detected in bacterial cells transferred from incandescent light to laser light. We were also able to show that to achieve a given growth rate in a light-limited culture, the VCSEL required only 30% of the electricity needed by an incandescent bulb, which is of great significance for the potential use of laser-devices in biotechnological applications and photobioreactor construction. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines options for high capacity all optical networks. Specifically optical time division multiplexed (OTDM) networks based on electro-optic modulators are investigated experimentally, whilst comparisons with alternative approaches are carried out. It is intended that the thesis will form the basis of comparison between optical time division multiplexed networks and the more mature approach of wavelength division multiplexed networks. Following an introduction to optical networking concepts, the required component technologies are discussed. In particular various optical pulse sources are described with the demanding restrictions of optical multiplexing in mind. This is followed by a discussion of the construction of multiplexers and demultiplexers, including favoured techniques for high speed clock recovery. Theoretical treatments of the performance of Mach Zehnder and electroabsorption modulators support the design criteria that are established for the construction of simple optical time division multiplexed systems. Having established appropriate end terminals for an optical network, the thesis examines transmission issues associated with high speed RZ data signals. Propagation of RZ signals over both installed (standard fibre) and newly commissioned fibre routes are considered in turn. In the case of standard fibre systems, the use of dispersion compensation is summarised, and the application of mid span spectral inversion experimentally investigated. For green field sites, soliton like propagation of high speed data signals is demonstrated. In this case the particular restrictions of high speed soliton systems are discussed and experimentally investigated, namely the increasing impact of timing jitter and the downward pressure on repeater spacings due to the constraint of the average soliton model. These issues are each addressed through investigations of active soliton control for OTDM systems and through investigations of novel fibre types respectively. Finally the particularly remarkable networking potential of optical time division multiplexed systems is established, and infinite node cascadability using soliton control is demonstrated. A final comparison of the various technologies for optical multiplexing is presented in the conclusions, where the relative merits of the technologies for optical networking emerges as the key differentiator between technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work on ultra-long Raman fiber lasers has shown that it is possible to create quasi-lossless transmission conditions in fiber spans long enough to be considered for high speed optical communications. This paper reviews how quasi-lossless transmission conditions are reached and presents experimental results of 40Gb/s transmission in a quasi lossless system. The performance is compared with a conventional EDFA based system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work on ultra-long Raman fiber lasers has shown that it is possible to create quasi-lossless transmission conditions in fiber spans long enough to be considered for high speed optical communications. This paper reviews how quasi-lossless transmission conditions are reached and presents experimental results of 40Gb/s transmission in a quasi lossless system. The performance is compared with a conventional EDFA based system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μ J with a pulse width of 1.68 μ s and signal-to-noise ratio (SNR) of ∼50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μ m. To the best of our knowledge, this is the first 3 μ m region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 Astro Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical-external-cavity surface-emitting lasers (VECSELs) have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multi-mode or single-frequency continuouswave operation, and on the other hand two-color as well as mode-locked emission. Particularly, the combination of semiconductor gain medium and external cavity provides a unique access to high-brightness output, a high beam quality and wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the achievable radiation wavelength, spanning a spectral range from the UV to the THz. In this work, recent advances in the field of VECSELs are summarized and the demonstration of self-mode-locking (SML) VECSELs with sub-ps pulses is highlighted. Thereby, we present studies which were not only performed for a quantum-well-based VECSEL, but also for a quantum-dot VECSEL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diode-cladding-pumped mid-infrared passively Q-switched Ho 3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 SPIE.