935 resultados para SOLUTION TEMPERATURE BEHAVIOR
Resumo:
The objective of this work was to compare the meiotic behavior and pollen grain viability of three species of Crotalaria. Slides for meiotic analysis were prepared by the air-drying technique. Pollen grain viability was measured by three staining procedures (Alexander's solution, tetrazolium chloride and fluorescein diacetate) and in vitro germination in a sucrose solution. Eight bivalents were observed, confirming previous reports on populations from other regions of Brazil, as well as from other countries. All species showed abnormal meiotic behavior as follows: in Crotalaria micans, cytomixis and abnormal chromosome pairing in diakinesis; in C. spectabilis, abnormal chromosome pairing in diplotene; in C. zanzibarica, shrunk nuclei in leptotene and zygotene. Pollen grains of all three species show low viability, which may be associated with the irregularities of the meiotic behavior.
Resumo:
We study steady states in d-dimensional lattice systems that evolve in time by a probabilistic majority rule, which corresponds to the zero-temperature limit of a system with conflicting dynamics. The rule satisfies detailed balance for d=1 but not for d>1. We find numerically nonequilibrium critical points of the Ising class for d=2 and 3.
Resumo:
The magnetization process of Co/Al oxide/Py trilayers and its evolution with the temperature have been analyzed. The particular behavior of the Co layers, including the shift of the hysteresis loops and a coercivity increase with the decrease of temperature, is related with the apparition of a CoO layer at the Co/Al-oxide interface.
Resumo:
Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.
Resumo:
Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.
Resumo:
Con objeto de buscar información para un mejor control de Oxalis latifolia Kunth, se ha estudiado el efecto que presentan la temperatura y la humedad sobre la activación de sus bulbos, tanto en la forma común como en la forma Cornwall de la misma. Los bulbos de la mala hierba se mantuvieron en un refrigerador a +4°C durante 13, 20, 27, 41, 48 y 55 días. Se sacaron tres grupos de 30 bulbos de cada forma en cada fecha de muestreo y se colocaron a 21°C; 15 de ellos se mantuvieron en condiciones de sequía —no se regaron— y otros 15 en condiciones de humedad —añadiendo el agua necesaria—. Los resultados muestran que la activación ocurre durante un período prolongado de tiempo en ambas formas, tanto en seco como en húmedo. También se observó que los bulbos secos se activaron antes que los húmedos y los de la forma común antes que los Cornwall. Se observaron dos patrones de activación: los bulbos secos de la forma común generalmente presentaron una activación que sigue un patrón logarítmico, mientras que sus bulbos humedecidos mostraron una tendencia linear; los bulbos Cornwall se activaron con una tendencia exponencial en la mayoría de los casos. El tiempo medio requerido para la activación después del almacenamiento en frío fue constante en la forma común, sin embargo la activación de Cornwall fue más rápida cuanto más tiempo permanecieron almacenados en frío.
Resumo:
Tämän diplomityön tarkoituksena oli tutkia pintaliimatärkkelysten reologista käyttäytymistä korkeissa kuiva-ainepitoisuuksissa. Tarve työn suorittamiselle syntyi kun tutkittiin pintaliimausta filminsiirtopuristimella tavallista korkeammissa kuiva-ainepitoisuuksissa, sileän sauvan ollessa applikointilaitteena. Koska applikointi sileällä sauvalla tapahtuu hydrodynaamisten periaatteiden mukaisesti, sen käyttö edellyttää pintaliimojen reologisten ominaisuuksien tarkkaa tuntemusta ja hallintaa.Kiinnostuksen kohteena olevat ominaisuudet olivat tärkkelysten kuiva-ainepitoisuuden (8 – 30 %) vaikutus viskositeettiin eri lämpötiloissa (20, 30, 40 ja 50 ºC), leikkausnopeus alueella 1 s-1 - 700 000 s-1. Myös tärkkelysten myötörajat määritettiin tutkimuksessa. Viskositeetti eri leikkausnopeusalueilla mitattiin seuraavilla laitteilla: Bohlin VOR (matalat leikkausnopeudet ja myötöraja) ja Hercules HiShear (keskitason leikkausnopeudet) reometrit sekä Eklund kapillaariviskometri (korkeat leikkausno-peudet). Analysoidut tärkkelykset olivat kaksi anionista matalaviskoottista peruna (tärkkelys A) ja ohra (tärkkelys C) tärkkelystä, sekä yksi kationinen korkeaviskoottinen peruna tärkkelys (tärkkelys B). Tutkittujen tärkkelysten Brookfield viskositeetit (100 rpm) olivat (10 % liuos, 60 °C:ssa) tärkkelys A ja C: 25 ± 5 mPas ja tärkkelys B: 100 ± 20 mPas.Tärkkelysliuosten kuiva-ainepitoisuuden noustessa muuttui virtauskäyttäytyminen Newtoniaalisesta leikkausohenevaksi. Leikkausoheneva käyttäytyminen oli voimakkainta tärkkelys B:n kohdalla. Viskositeetti – lämpötila riippuvuus korkeissa leikkausnopeuksissa (esim. 500 000 s-1) oli vähäisempää, mitä oli oletettavissa Brookfield viskositeettiarvojen perusteella. Kaikki tarkkelykset osoittautuivat tiksotrooppisiksi, myös tiksotrooppisuus lisääntyi kuiva-ainepitoisuuden kasvaessa. Tärkkelysten myötörajat osoittautuivat odottamattoman alhaisiksi, kuitenkin varsinkin tärkkelys B:n myötörajat olivat selvästi riippuvaisia lämpötilasta ja kuiva-ainepitoisuudesta. Tutkittujen tärkkelysten virtauskäyttäytyminen oli kirjallisuudessa esitetyn kaltaista. Tärkkelysmolekyylien ketjun pituus oli tärkein tärkkelyksen reologisia ominaisuuksia määrittävä tekijä; mitä matalampi on tärkkelyksen molekyylimassa, sitä matalammat ovat viskositeetti ja myötöraja. Pintaliimauksessa tärkkelysmolekyylien ketjunpituudella on suuri vaikutus ajettavuuteen ja lopputuotteen ominaisuuksiin. Haasteellista pintaliimatärkkelyksen valinnassa on sellaisen yhdistelmän löytäminen, jossa sopivan reologisen käyttäytymisen omaava tärkkelys ja pintaliimatulle paperille tai kartongille asetetut vaatimukset kohtaavat.
Resumo:
We propose a simple rheological model to describe the thixotropic behavior of paints, since the classical hysteresis area, which is usually used, is not enough to evaluate thixotropy. The model is based on the assumption that viscosity is a direct measure of the structural level of the paint. The model depends on two equations: the Cross-Carreau equation to describe the equilibrium viscosity and a second order kinetic equation to express the time dependence of viscosity. Two characteristic thixotropic times are differentiated: one for the net structure breakdown, which is defined as a power law function of shear rate, and an other for the net structure buildup, which is not dependent on the shear rate. The knowledge of both kinetic processes can be used to improve the quality and applicability of paints. Five representative commercial protective marine paints are tested. They are based on chlorinated rubber, acrylic, alkyd, vinyl, and epoxy resins. The temperature dependence of the rheological behavior is also studied with the temperature ranging from 5 ºC to 35 ºC. It is found that the paints exhibit both shear thinning and thixotropic behavior. The model fits satisfactorily the thixotropy of the studied paints. It is also able to predict the thixotropy dependence on temperature. Both viscosity and the degree of thixotropy increase as the temperature decreases.
Resumo:
In this paper is presented electrochemical evidences of the influence of the light on the electrochemical behavior of nickel electrode in diluted sulfuric acid. The current densities related with the electrooxidation of the metal decreases when the electrode is under illumination. The corrosion potential, Ecorr , shift to a more positive value in this condition. This effect was observed with polychromatic light and with different wavelength glass filters such as 700 nm and 520 nm. It was observed that increasing the temperature of the solution, the current densities related with cathodic and anodic processes, increases instead of decreases. The activation energy related with the electrooxidation of the electrode was higher under illumination than in the dark. It is suggested that this behavior may be related or with a photo-inhibition effect either with dessorption of adsorbed water involved in the electrooxidation mechanism.
Resumo:
The bridged sulphate complex [Pd2 (C²,dmba) (µ-SO4) (SO2)2] has been obtained by reacting a saturated solution of SO2 in methanol and the cyclometallated compound [Pd(C²,N-dmba)(µ-N3)] 2; (dmba = N,N-dimethylbenzylamine), at room temperature for 24 h. Reaction product was characterized by elemental analysis, NMR comprising 13C{¹H} and ¹H nuclei and I.R. spectrum's measurements. Thermal behavior has been investigated and residual products identified by X-ray powder diffraction.
Resumo:
This paper is a literature review which describes the construction of state of the art of permanent magnet generators and motors constructing and discusses the current and possible application of these machines in industry. Permanent magnet machines are a well-know class of rotating and linear electric machines used for many years in industrial applications. A particular interest for permanent magnet generators is connected with wind mills, which seem to be becoming increasingly popular nowadays. Geared and direct-driven permanent magnet generators are described. A classification of direct-driven permanent magnet generators is given. Design aspects of permanent magnet generators are presented. Permanent magnet generators for wind turbines designs are highlighted. Dynamics and vibration problems of permanent magnet generators covered in literature are presented. The application of the Finite Element Method for mechanical problems solution in the field of permanent magnet generators is discussed.
Resumo:
This article reports the phase behavior determi- nation of a system forming reverse liquid crystals and the formation of novel disperse systems in the two-phase region. The studied system is formed by water, cyclohexane, and Pluronic L-121, an amphiphilic block copolymer considered of special interest due to its aggregation and structural proper- ties. This system forms reverse cubic (I2) and reverse hexagonal (H2) phases at high polymer concentrations. These reverse phases are of particular interest since in the two-phase region, stable high internal phase reverse emulsions can be formed. The characterization of the I2 and H2 phases and of the derived gel emulsions was performed with small-angle X-ray scattering (SAXS) and rheometry, and the influence of temperature and water content was studied. TheH2 phase experimented a thermal transition to an I2 phase when temperature was increased, which presented an Fd3m structure. All samples showed a strong shear thinning behavior from low shear rates. The elasticmodulus (G0) in the I2 phase was around 1 order of magnitude higher than in theH2 phase. G0 was predominantly higher than the viscousmodulus (G00). In the gel emulsions,G0 was nearly frequency-independent, indicating their gel type nature. Contrarily to water-in-oil (W/O) normal emulsions, in W/I2 and W/H2 gel emulsions, G0, the complex viscosity (|η*|), and the yield stress (τ0) decreased with increasing water content, since the highly viscous microstructure of the con- tinuous phase was responsible for the high viscosity and elastic behavior of the emulsions, instead of the volumefraction of dispersed phase and droplet size. A rheological analysis, in which the cooperative flow theory, the soft glass rheology model, and the slip plane model were analyzed and compared, was performed to obtain one single model that could describe the non-Maxwellian behavior of both reverse phases and highly concentrated emulsions and to characterize their microstructure with the rheological properties.
Resumo:
Sequential extraction is not totally effective to dissolve distinct forms of trace elements. The extractive solution, for example, can dissolve less of the target fraction and more than another not wished fraction. The goal of this work is to compare the extraction of native iron with three sequential extraction methods of the heavy metals, using three soils with different physical chemistry characteristics: a histosol, an oxisol, and a mollisol. The results obtained in this work demonstrate that a smaller relation soil/extractor results in a larger extraction in almost all phases. The use of many stages of the sequential extraction, with the purpose of more association of the metal with different components of the soil, can result, among other things, in modification of the substratum by the action of the reagents used, besides reducing the selectivity of the more specific extractors. Readsorption and redistribution of the heavy metals could have happened with larger intensity in the fraction where hidroxilamine was used with higher temperature. Sequential extraction of iron, without enrichment of soil samples, in the respective fractions in each method, it was important to better understand the behavior of the reagents considered specific to each form of the metal in soil.
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.