998 resultados para SOLIDIFICATION BEHAVIOR
Resumo:
We have investigated the near-critical behavior of the susceptibility of a ternary liquid mixture of 3-methylpyridine. water, and sodium bromide as a function of the salt concentration. The susceptibility was determined from light-scattering measurements performed at a scattering angle of 90 degrees in the one-phase region near the locus of lower consolute points. A sharp crossover from asymptotic Ising behavior to mean-field behavior has been observed at concentrations ranging from 8 to 16.5 mass% NaBr. The range of asymptotic Ising behavior shrinks with increasing salt concentration and vanishes at a NaBr concentration of about 17 mass%. where complete mean-field-like behavior of the susceptibility is observed. A simultaneous pronounced increase in the background scattering at concentrations above 15 mass%, as well as a dip in the critical locus at 17 mass % NaBr, suggests that this phenomenon can be interpreted as mean-field tricritical behavior associated with the formation of a microheterogeneous phase due to clustering of the molecules and ions. An analogy with tri critical behavior observed in polymer solutions as well as the possibility of a charge-density-wave phase is also discussed. In addition, we, have observed a third soap-like phase an the liquid-liquid interface in several binary and ternary liquid mixtures.
Resumo:
Thermal power stations use pulverized coal as fuel, producing enormous quantities of ash as a by-product of combustion. Currently, with very low utilization of the ash produced, the ash deposits at the thermal power stations are increasing rapidly. The disposal problem is expected to become alarming due to the limited space available for ash disposal near most thermal power stations. Among the various applications available for the use of fly ash, geotechnical application offers opportunity for its bulk utilization. However, the possibility of ground and surface water contamination due to the leaching of toxic elements present in the fly ash needs to be addressed. This paper describes a study carried out on two Indian fly ashes. It is found that pH is the controlling factor in the leaching behavior of fly ashes.
Resumo:
Polymer nanocomposites containing different concentrations of Au nanoparticles have been investigated by small angle X-ray scattering and electronic absorption spectroscopy. The variation in the surface plasmon resonance (SPR) band of Au nanoparticles with concentration is described by a scaling law. The variation in the plasmon band of ReO3 nanoparticles embedded in polymers also follows a similar scaling law. Sistance dependence of plasmon coupling in polymer composites f metal nanoparticles. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The dielectric behavior of some powdered polycrystalline samples has been studied in the frequency range of 200 Hz–100 kHz. It is shown that the dielectric behavior in these systems below the Curie temperature is not purely relaxational in its character and cannot be described by any of the models of the dielectric relaxation hitherto put forward. It is also shown that ‘‘isolation’’ of the particles in the powder samples plays a very important role. The origin of this abnormality is thought to be due to the mechanical resonance arising out of the magnetostrictive property of the material.
Resumo:
The system 3-methylpyridine(3MP)+water(H2O)+NaBr has been the subject of an intense scientific debate since the work of Jacob [Phys. Rev. E. 58, 2188 (1988)] and Anisimov [Phys. Rev. Lett. 85, 2336 (2000)]. The crossover critical behavior of this system seemed to show remarkable sensitivity to the weight fraction (X) of the ionic impurity NaBr. In the range X <= 0.10 the system displayed Ising behavior and a pronounced crossover to mean-field behavior in the range 0.10 <= X <= 0.16. A complete mean-field behavior was observed at X=0.17, a result that was later attributed to the existence of long-living nonequilibrium states in this system [Kostko , Phys. Rev. E. 70, 026118 (2004)]. In this paper, we report the near-critical behavior of osmotic susceptibility in the isotopically related ternary system, 3MP+heavy water(D2O)+NaBr. Detailed light-scattering experiments performed at exactly the same NaBr concentrations as investigated by Jacob reveal that the system 3MP+D2O+NaBr shows a simple Ising-type critical behavior with gamma similar or equal to 1.24 and nu similar or equal to 0.63 over the entire NaBr concentration range 0 <= X <= 0.1900. The crossover behavior is predominantly nonmonotonic and is completed well outside the critical domain. An analysis in terms of the effective susceptibility exponent (gamma(eff)) reveals that the crossover behavior is nonmonotonic for 0 <= X <= 0.1793 and tends to become monotonic for X > 0.1793. The correlation length amplitude xi(o), has a value of similar or equal to 2 A for 0.0250 <= X <= 0.1900, whereas for X=0, xi(o)similar or equal to 3.179 A. Since isotopic H -> D substitution is not expected to change the critical behavior of the system, our results support the recent results obtained by Kostko [Phys. Rev. E. 70, 026118 (2004)] that 3MP+H2O+NaBr exhibits universal Ising-type critical behavior typical for other aqueous solutions.
Resumo:
The delamination-restacking behavior of a number of layered double hydroxides (LDHs) differing in [M-II]/[M-III] ratio, constituent metal ions and intercalated surfactant anions in different organic solvents has been studied. Colloidal dispersion due to delamination and the stability of the colloid obtained have been found to be not affected much by the nature of the constituent metal ions but increase with increase in the size of the surfactant anion. LDHs with low [M-II]/[M-III] ratio delaminate better than the ones with high [M-II]/[M-III] ratio. Delamination is best in alcohols such as 1-butanol, 1-hexanol, 1-octanol and I-decanol, while a little delamination occurs in nonpolar solvents such as hexane. In all the cases, the original layered solid could be obtained through restacking of layers from the colloidal dispersion.
Resumo:
Bulk As-Te-Tl glasses belonging to the As30Te70-xTlx (4 <= x <= 22) and As40Te60-xTlx (5 <= x <= 20) composition tie lines are studied for their I-V characteristics. Unlike other As-Te-III glasses such as As-Te-Al and As-Te-In, which exhibit threshold behavior, the present samples show memory switching. The composition dependence of switching voltages (V-t) of As-Te-Tl glasses is also different from that of As-Te-Al and As-Te-In glasses, and it is found that V-t decreases with the addition of Tl. Both the type of switching exhibited by As-Te-Tl glasses and the composition dependence of V-t, seems to be intimately connected with the nature of bonding of Tl atoms and the resultant structural network. Furthermore, the temperature and thickness dependence of switching voltages of As-Te-Tl glasses suggest an electro thermal mechanism for switching in these samples.
Resumo:
The crystal structures and magnetic properties of five new transition metal-azido complexes with two anionic [pyrazine-2-carboxylate (pyzc) and p-aminobenzoate (paba)] and two neutral [pyrazine (pyz) and pyridine (py)] coligands are reported All five complexes were synthesized bysolvothermal methods The complex [Co-2(pyzc)(2)(N-3)(2)(H2O)(2)](n) (1) is 1D and exhibit canted antiferromagnetism, while the 3D complex [MnNa(pyzc)(N-3)(2)(H2O)(2)](n) (2) has a complicated structure and is weakly ferromagnetic in nature [Mn-2(paba)(2)(N-3)(2)(H2O)(2)](n) (3). is a 2D sheet and the Mn-II ions are found to be antiferromagnetically coupled The isostructural 2D complexes [Cu-3(pyz)(2)(N-3)(6)](n) (4) and [Cu-3(py)(2)(N-3)(6)](n) (5) resemble remarkably in their magnetic properties exhibiting moderately strong ferromagnetism. Density functional theory calculations (B3LYP functional) have been performed to provide a qualitative theoretical interpietation of the overall magnetic behavior shown by these complexes.
Effect Of Molybdenum And Silicon On The Electrochemical Corrosion Behavior Of Fenib Metallic Glasses
Resumo:
An electron-beam melting and centrifugal splat-quenching technique for the production of microflakes of Ti-6A1-4V (wt%) alloy quenched at an average cooling rate of about 105 K sec–1 is described. The effect of substrate angle on the shape, size, microstructure and average cooling rate of the flakes of major sieve fractions is discussed. Morphologies of particles of minor sieve fractions are dealt with briefly.
Resumo:
A creep resistant permanent mould cast Mg alloy MRI 230D was laser surface alloyed with Al and a mixture of Al and Al2O3 using pulsed Nd:YAG laser irradiation at four different scan speeds in order to improve the corrosion and wear resistance. The microstructure, corrosion and wear behavior of the laser surface alloyed material is reported in this manuscript. The coating comprised of a featureless microstructure with cellular-dendritic microstructure near the interface and exhibited good interfacial bonding. A few solidification cracks reaching down to substrate were also observed. The two step coating with Al followed by a mixture of Al and Al2O3 exhibited a slightly better corrosion resistance than the single step coating with Al. In the long run, however, corrosion resistance of both the coatings became comparable to the as-cast alloy. The corroded surface of the laser surface alloyed specimens revealed a highly localized corrosion. The laser surface alloyed specimens exhibited an improvement in wear resistance. The laser scan speed did not exhibit a monotonic trend either in corrosion or wear resistance.
Resumo:
Short-time analytical solutions of solid and liquid temperatures and freezing front have been obtained for the outward radially symmetric spherical solidification of a superheated melt. Although results are presented here only for time dependent boundary flux, the method of solution can be used for other kinds of boundary conditions also. Later, the analytical solution has been compared with the numerical solution obtained with the help of a finite difference numerical scheme in which the grid points change with the freezing front position. An efficient method of execution of the numerical scheme has been discussed in details. Graphs have been drawn for the total solidification times and temperature distributions in the solid.
Resumo:
The reaction of pyrimidine-2-carbonitrile, NaN3 in the presence of Co(NO3)(2)center dot 6H(2)O or MnCl2 center dot 4H(2)O leads to the formation of complexes Co(pmtz)(mu(1,3)-N-3)(H2O)](n) (1) and Mn(pmtz)(mu(1,3)-N-3)(H2O)](n) (2) respectively, under hydrothermal condition pmtz =5-(pyrimidyl)tetrazolate]. These two complexes have been fully characterized by single crystal X-ray diffraction. Complex 1 crystallizes in a non-centrosymmetric space group Aba2 in the orthorhombic system and is found to exhibit ferroelectric behavior, whereas complex 2 crystallizes in the P2(1)/c space group in the monoclinic system. Variable temperature magnetic characterizations in the temperature range of 2-300 K indicate that complex 1 is a canted antiferromagnet (weak ferromagnet) with T-c = 15.9 K. Complex 1 represents a unique example of a multiferroic coordination polymer containing tetrazole as a co-ligand. Complex 2 is a one-dimensional chain of Mn(II) bridged by a well-known antiferromagnetic coupler end-to-end azido ligand. In contrast to the role played by the end-to-end azido pathway in most of the transition metal complexes, complex 2 showed unusual ferromagnetic behavior below 40 K because of spin canting.
Resumo:
The behavior of electrical resistivity in the critical region of three polar + nonpolar binary liquid systems CS2 +(CH3CO)2O, C6H12+(CH3CO)2O, and n‐C7H16+(CH3CO)2O is studied. For the mixtures with critical composition, the two phase region shows a conductivity behavior with σ1−σ2∼ (−ϵ)β with β?0.35. In the one phase region dR/dT has a singularity ϵ−b with b?0.35. A possible theory of the impurity conduction is given, which broadly explains these results. The possibility of dR/dT being positive or negative is also discussed.
Resumo:
Thixocasting requires manufacturing of billets with non-dendritic microstructure. Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer. Subsequent heat treatment was used to produce a transition from rosette to globular microstructure. The current and the duration of stirring were explored as control parameters. Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles. The effect of processing parameters on the dendrite fragmentation was discussed. Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process. A non-isothermal alloy solidification model was used for simulations. The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one. Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale. The results were interpreted in the light of existing theories of microstructure refinement and globularisation.