982 resultados para SNC-AP
Resumo:
The preparation and thermal decomposition of lithium and magnesium perchlorate ammines have been investigated. The catalytic effect of these ammines on AP decomposition has been studied. The catalytic effect of lithium and magnesium salts on AP decomposition has been attributed to the formation of the metal perchlorate ammine intermediate. In the case of a magnesium salt: AP mixture, the melting of the magnesium perchlorate monoammine intermediate seems to play an important role in catalysing the decomposition.
Resumo:
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein−protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson−Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos−c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos−c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.
Resumo:
STUDIES on potassium perchlorate/polystyrene (KP/PS) propellant systems have been carried out by using such techniques as thermogravimetry (TG), differential thermal analysis (DTA), and mass spectrometry (MS). It has been found that the thermal decomposition (TD) behavior of the KP/PS propellant is similar to that of the AP/PS propellant studied earlier.! It has also been observed that the TD of KP in the melt has a correlation with the burning rate (r) of KP/PS propellant at atmospheric pressure.
Resumo:
We investigate a version of noncommutative QED where the interaction term, although natural, breaks the spin-statistics connection. We calculate e(-) + e(-) -> e(-) + e(-) and gamma + e(-) -> gamma + e(-) cross-sections in the tree approximation and explicitly display their dependence on theta(mu nu). Remarkably the zero of the elastic e(-) + e(-) -> e(-) + e(-) cross-section at 90 degrees in the center-of-mass system, which is due to Pauli principle, is shifted away as a function of theta(mu nu) and energy.
Resumo:
The network scenario is that of an infrastructure IEEE 802.11 WLAN with a single AP with which several stations (STAs) are associated. The AP has a finite size buffer for storing packets. In this scenario, we consider TCP-controlled upload and download file transfers between the STAs and a server on the wireline LAN (e.g., 100 Mbps Ethernet) to which the AP is connected. In such a situation, it is well known that because of packet losses due to finite buffers at the AP, upload file transfers obtain larger throughputs than download transfers. We provide an analytical model for estimating the upload and download throughputs as a function of the buffer size at the AP. We provide models for the undelayed and delayed ACK cases for a TCP that performs loss recovery only by timeout, and also for TCP Reno. The models are validated incomparison with NS2 simulations.
Resumo:
While the two decades since the study by Kavanagh et al. (1993) has given additional insights into effective dissemination of family interventions, the accompanying papers show that progress remains limited. The effectiveness trial that triggered this series of papers offers a cautionary tale. Despite management support, 30–35 hr of workshop training and training of local supervisors who could act as champions, use of the full intervention was limited. In part, this seemed due to the demanding nature of the intervention and its incompatibility with practitioners’ roles, in part, to limitations in the training, among other factors. While the accompanying papers note these and other barriers to dissemination, they miss a more disturbing finding in the original paper: Practitioners said they were using several aspects in routine care, despite being unable to accurately describe what they were. This finding highlights the risks in taking practitioners’ reports of their practice in files or supervision sessions at face value and potentially has implications for reports of other clinical work. The fidelity of disseminated treatments can only be assured by audits of practice, accompanied by affirming but also corrective feedback.
Resumo:
Acute pancreatitis (AP), a common cause of acute abdominal pain, is usually a mild, self-limited disease. However, some 20-30% of patients develop a severe disease manifested by pancreatic necrosis, abscesses or pseudocysts, and/or extrapancreatic complications, such as vital organ failure (OF). Patients with AP develop systemic inflammation, which is considered to play a role in the pathogenesis of multiple organ failure (MOF). OF mimics the condition seen in patients with sepsis, which is characterized by an overwhelming production of inflammatory mediators, activation of the complement system and systemic activation of coagulation, as well as the development of disseminated intravascular coagulation (DIC) syndrome. Vital OF is the major cause of mortality in AP, along with infectious complications. About half of the deaths occur within the first week of hospitalization and thus, early identification of patients likely to develop OF is important. The aim of the present study was to investigate inflammatory and coagulation disturbances in AP and to find inflammatory and coagulation markers for predicting severe AP, and development of OF and fatal outcome. This clinical study consists of four parts. All of patients studied had AP when admitted to Helsinki University Central Hospital. In the first study, 31 patients with severe AP were investigated. Their plasma levels of protein C (PC) and activated protein C (APC), and monocyte HLA-DR expression were studied during the treatment period in the intensive care unit; 13 of these patients developed OF. In the second study, the serum levels of complement regulator protein CD59 were studied in 39 patients during the first week of hospitalization; 12 of them developed OF. In the third study, 165 patients were investigated; their plasma levels of soluble form of the receptor for advanced glycation end products (sRAGE) and high mobility group box 1 (HMGB1) protein were studied during the first 12 days of hos-pitalization; 38 developed OF. In the fourth study, 33 patients were studied on admission to hospital for plasma levels of prothrombin fragment F1+2 and tissue factor pathway inhibitor (TFPI), and thrombin formation capacity by calibrated automated thrombogram (CAT); 9 of them developed OF. Our results showed significant PC deficiency and decreased APC generation in patients with severe AP. The PC pathway defects seemed to be associated with the development of OF. In patients who developed OF, the levels of serum CD59 and plasma sRAGE, but not of HMGB1, were significantly higher than in patients who recovered without OF. The high CD59 levels on admission to the hospital seemed to be predictive for severe AP and OF. The median of the highest sRAGE levels was significantly higher in non-survivors than in survivors. No significant difference between the patient groups was found in the F1+2 levels. The thrombograms of all patients were disturbed in their shape, and in 11 patients the exogenous tissue factor did not trigger thrombin generation at all ( flat curve ). All of the patients that died displayed a flat curve. Free TFPI levels and free/total TFPI ratios were significantly higher in patients with a flat curve than in the others, and these levels were also significantly higher in non-survivors than in survivors. The flat curve in combination with free TFPI seemed to be predictive for a fatal outcome in AP.
Resumo:
We extend the modeling heuristic of (Harsha et al. 2006. In IEEE IWQoS 06, pp 178 - 187) to evaluate the performance of an IEEE 802.11e infrastructure network carrying packet telephone calls, streaming video sessions and TCP controlled file downloads, using Enhanced Distributed Channel Access (EDCA). We identify the time boundaries of activities on the channel (called channel slot boundaries) and derive a Markov Renewal Process of the contending nodes on these epochs. This is achieved by the use of attempt probabilities of the contending nodes as those obtained from the saturation fixed point analysis of (Ramaiyan et al. 2005. In Proceedings ACM Sigmetrics, `05. Journal version accepted for publication in IEEE TON). Regenerative analysis on this MRP yields the desired steady state performance measures. We then use the MRP model to develop an effective bandwidth approach for obtaining a bound on the size of the buffer required at the video queue of the AP, such that the streaming video packet loss probability is kept to less than 1%. The results obtained match well with simulations using the network simulator, ns-2. We find that, with the default IEEE 802.11e EDCA parameters for access categories AC 1, AC 2 and AC 3, the voice call capacity decreases if even one streaming video session and one TCP file download are initiated by some wireless station. Subsequently, reducing the voice calls increases the video downlink stream throughput by 0.38 Mbps and file download capacity by 0.14 Mbps, for every voice call (for the 11 Mbps PHY). We find that a buffer size of 75KB is sufficient to ensure that the video packet loss probability at the QAP is within 1%.
Resumo:
Acute pancreatitis (AP) is a common disease. Mild disease resolves spontaneously in a few days. Severe forms of the disease can lead to local complications, necrosis, and abscesses in and around the pancreas. Systemic inflammation in severe AP is associated with distant organ failures. The aim of this study is to identify genetically determined prognostic factors involved in the clinical features of AP. The study employs a candidate-gene approach, and the genes are involved in trysinogen activation in the initiation phase of the disease, as well as in the systemic inflammation as the disease proceeds. The last study examines adipokines, fat-derived hormones characterized with the capacity to modify inflammation. SPINK 1 is a gene coding trypsin activation inhibitor. Mutations N34S and P55N were determined by minisequencing methods in 371 AP patients and in 459 controls. The mutation N34S was more common in AP patients (7.8%) than in controls (2.6%). This suggests that SPINK 1 gene mutation N34S is a risk factor for AP. In the fourth study, in 12 matched pairs of patients with severe and mild AP, levels of adipokines, adiponectin, and leptin were evaluated. Plasma adipokine levels did not differ between patients with mild and severe AP. The results suggest that in AP, adipokine plasma levels are not factors predisposing to organ failures. This study identified the SPINK 1 mutation N34S to be a risk factor for AP in the general population. As AP is a multifactorial disease, and extensive genetic heterogeneity is likely, further identification of genetic factors in the disease requires larger future studies with more advanced genetic study models. Further identification of the patient characteristics associated with organ failures offers another direction of the study to achieve more detailed understanding of the severe form of AP.
Resumo:
The intervertebral disc is composed of concentrically arranged components: annulus fibrosus, the transition zone, and central nucleus pulposus. The major disc cell type differs in various parts of the intervertebral disc. In annulus fibrosus a spindle shaped fibroblast-like cell mainly dominates, whereas in central nucleus pulposus the more rounded chondrocyte-like disc cell is the major cell type. At birth the intervertebral disc is well vascularized, but during childhood and adolescence blood vessels become smaller and less numerous. The adult intervertebral disc is avascular and is nourished via the cartilage endplates. On the other hand, degenerated and prolapsed intervertebral discs are again vascularized, and show many changes compared to normal discs, including: nerve ingrowth, change in collagen turnover, and change in water content. Furthermore, the prolapsed intervertebral disc tissue has a tendency to decrease in size over time. Growth factors are polypeptides which regulate cell growth, extracellular matrix protease activity, and vascularization. Oncoproteins c-Fos and c-Jun heterodimerize, forming the AP-1 transcription factor which is expressed in activated cells. In this thesis the differences of growth factor expression in normal intervertebral disc, the degenerated intervertebral disc and herniated intervertebral disc were analyzed. Growth factors of particular interest were basic fibroblast growth factor (bFGF or FGF-2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGFβ). Cell activation was visualized by the expression of the AP-1 transcription promoters c-Fos and c-Jun. The expression was shown with either mono- or polyclonal antibodies by indirect avidin-biotin-peroxidase immunohistochemical staining method. The normal control material was collected from a tissue bank of five organ donors. The degenerated disc material was from twelve patients operated on for painful degenerative disc disease, and herniated disc tissue material was obtained from 115 patients operated on for sciatica. Normal control discs showed only TGFβ immunopositivity. All other factors studied were immunonegative in the control material. Prolapsed disc material was immunopositive for all factors studied, and this positivity was located either in the disc cells or in blood vessels. Furthermore, neovascularization was noted. Disc cell immunoreaction was shown in chondrocyte-like disc cells or in fibroblast-like disc cells, the former being expressed especially in conglomerates (clusters of disc cells). TGFβ receptor induction was prominent in prolapsed intervertebral disc tissue. In degenerated disc material, the expression of growth factors was analyzed in greater detail in various parts of the disc: nucleus pulposus, anterior annulus fibrosus and posterior annulus fibrosus. PDGF did not show any immunoreactivity, whereas all other studied growth factors were localized either in chondrocyte-like disc cells, often forming clusters, in fibroblast-like disc cells, or in small capillaries. Many of the studied degenerated discs showed tears in the posterior region of annulus fibrosus, but expression of immunopositive growth factors was detected throughout the entire disc. Furthermore, there was a difference in immunopositive cell types for different growth factors. The main conclusion of the thesis, supported by all substudies, is the occurrence of growth factors in disc cells. They may be actively participating in a network regulating disc cell growth, proliferation, extracellular matrix turnover, and neovascularization. Chondrocyte-like disc cells, in particular, expressed growth factors and oncoproteins, highlighting the importance of this cell type in the basic pathophysiologic events involved in disc degeneration and disc rearrangement. The thesis proposes a hypothesis for cellular remodelling in intervertebral disc tissue. In summary, the model presents an activation pattern of different growth factors at different intervertebral disc stages, mechanisms leading to neovascularization of the intervertebral disc in pathological conditions, and alteration of disc cell shape, especially in annulus fibrosus. Chondrocyte-like disc cells become more numerous, and these cells are capable of forming clusters, which appear to be regionally active within the disc. The alteration of the phenotype of disc cells expressing growth factors from fibroblast-like disc cells to chondrocyte-like cells in annulus fibrosus, and the numerous expression of growth factor expressing disc cells in nucleus pulposus, may be a key element both during pathological degeneration of the intervertebral disc, and during the healing process after trauma.
Resumo:
In this paper, we are concerned with energy efficient area monitoring using information coverage in wireless sensor networks, where collaboration among multiple sensors can enable accurate sensing of a point in a given area-to-monitor even if that point falls outside the physical coverage of all the sensors. We refer to any set of sensors that can collectively sense all points in the entire area-to-monitor as a full area information cover. We first propose a low-complexity heuristic algorithm to obtain full area information covers. Using these covers, we then obtain the optimum schedule for activating the sensing activity of various sensors that maximizes the sensing lifetime. The scheduling of sensor activity using the optimum schedules obtained using the proposed algorithm is shown to achieve significantly longer sensing lifetimes compared to those achieved using physical coverage. Relaxing the full area coverage requirement to a partial area coverage (e.g., 95% of area coverage as adequate instead of 100% area coverage) further enhances the lifetime.
Resumo:
In this paper, we are concerned with algorithms for scheduling the sensing activity of sensor nodes that are deployed to sense/measure point-targets in wireless sensor networks using information coverage. Defining a set of sensors which collectively can sense a target accurately as an information cover, we propose an algorithm to obtain Disjoint Set of Information Covers (DSIC), which achieves longer network life compared to the set of covers obtained using an Exhaustive-Greedy-Equalized Heuristic (EGEH) algorithm proposed recently in the literature. We also present a detailed complexity comparison between the DSIC and EGEH algorithms.
Resumo:
We provide analytical models for capacity evaluation of an infrastructure IEEE 802.11 based network carrying TCP controlled file downloads or full-duplex packet telephone calls. In each case the analytical models utilize the attempt probabilities from a well known fixed-point based saturation analysis. For TCP controlled file downloads, following Bruno et al. (In Networking '04, LNCS 2042, pp. 626-637), we model the number of wireless stations (STAs) with ACKs as a Markov renewal process embedded at packet success instants. In our work, analysis of the evolution between the embedded instants is done by using saturation analysis to provide state dependent attempt probabilities. We show that in spite of its simplicity, our model works well, by comparing various simulated quantities, such as collision probability, with values predicted from our model. Next we consider N constant bit rate VoIP calls terminating at N STAs. We model the number of STAs that have an up-link voice packet as a Markov renewal process embedded at so called channel slot boundaries. Analysis of the evolution over a channel slot is done using saturation analysis as before. We find that again the AP is the bottleneck, and the system can support (in the sense of a bound on the probability of delay exceeding a given value) a number of calls less than that at which the arrival rate into the AP exceeds the average service rate applied to the AP. Finally, we extend the analytical model for VoIP calls to determine the call capacity of an 802.11b WLAN in a situation where VoIP calls originate from two different types of coders. We consider N-1 calls originating from Type 1 codecs and N-2 calls originating from Type 2 codecs. For G711 and G729 voice coders, we show that the analytical model again provides accurate results in comparison with simulations.
Resumo:
Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.
Resumo:
Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of ± 5% and ± 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 × 20 × 20 mm3 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI (nominal voxel volume 10(RL) × 10(AP) × 7.5(SI) mm3), respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or progressing GBM or anaplastic astrocytoma gradus III, and two patients had head and neck cancer. For nine patients (patients 1-9), MRS/MRSI was performed 70-140 min after the second irradiation field, and for one patient (patient 10), the MRSI study began 11 min before the end of the BPA-F infusion and ended 6 min after the end of the infusion. In comparison, single voxel MRS was performed before BNCT, for two patients (patients 3 and 9), and for one patient (patient 9), MRSI was performed one month after treatment. For one patient (patient 10), MRSI was performed four days before infusion. Signals from the tumour spectrum aromatic region were detected on the day of BNCT in three patients, indicating that in favourable cases, it is possible to detect BPA in vivo in the patient’s brain after BNCT treatment or at the end of BPA-F infusion. However, because the shape and position of the detected signals did not exactly match the BPA spectrum detected in the in vitro conditions, assignment of BPA is difficult. The opportunity to perform MRS immediately after the end of BPA-F infusion for more patients is necessary to evaluate the suitability of 1H MRS for BPA detection or quantification for treatment planning purposes. However, it could be possible to use MRSI as criteria in selecting patients for BNCT.