885 resultados para SIFT,Computer Vision,Python,Object Recognition,Feature Detection,Descriptor Computation
Resumo:
Virtual reality has a number of advantages for analyzing sports interactions such as the standardization of experimental conditions, stereoscopic vision, and complete control of animated humanoid movement. Nevertheless, in order to be useful for sports applications, accurate perception of simulated movement in the virtual sports environment is essential. This perception depends on parameters of the synthetic character such as the number of degrees of freedom of its skeleton or the levels of detail (LOD) of its graphical representation. This study focuses on the influence of this latter parameter on the perception of the movement. In order to evaluate it, this study analyzes the judgments of immersed handball goalkeepers that play against a graphically modified virtual thrower. Five graphical representations of the throwing action were defined: a textured reference level (L0), a nontextured level (L1), a wire-frame level (L2), a moving point light display (MLD) level with a normal-sized ball (L3), and a MLD level where the ball is represented by a point of light (L4). The results show that judgments made by goalkeepers in the L4 condition are significantly less accurate than in all the other conditions (p
Resumo:
For some time there is a large interest in variable step-size methods for adaptive filtering. Recently, a few stochastic gradient algorithms have been proposed, which are based on cost functions that have exponential dependence on the chosen error. However, we have experienced that the cost function based on exponential of the squared error does not always satisfactorily converge. In this paper we modify this cost function in order to improve the convergence of exponentiated cost function and the novel ECVSS (exponentiated convex variable step-size) stochastic gradient algorithm is obtained. The proposed technique has attractive properties in both stationary and abrupt-change situations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel image segmentation method based on a constraint satisfaction neural network (CSNN) is presented. The new method uses CSNN-based relaxation but with a modified scanning scheme of the image. The pixels are visited with more distant intervals and wider neighborhoods in the first level of the algorithm. The intervals between pixels and their neighborhoods are reduced in the following stages of the algorithm. This method contributes to the formation of more regular segments rapidly and consistently. A cluster validity index to determine the number of segments is also added to complete the proposed method into a fully automatic unsupervised segmentation scheme. The results are compared quantitatively by means of a novel segmentation evaluation criterion. The results are promising.
Resumo:
As a promising method for pattern recognition and function estimation, least squares support vector machines (LS-SVM) express the training in terms of solving a linear system instead of a quadratic programming problem as for conventional support vector machines (SVM). In this paper, by using the information provided by the equality constraint, we transform the minimization problem with a single equality constraint in LS-SVM into an unconstrained minimization problem, then propose reduced formulations for LS-SVM. By introducing this transformation, the times of using conjugate gradient (CG) method, which is a greatly time-consuming step in obtaining the numerical solution, are reduced to one instead of two as proposed by Suykens et al. (1999). The comparison on computational speed of our method with the CG method proposed by Suykens et al. and the first order and second order SMO methods on several benchmark data sets shows a reduction of training time by up to 44%. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we exploit the analogy between protein sequence alignment and image pair correspondence to design a bioinformatics-inspired framework for stereo matching based on dynamic programming. This approach also led to the creation of a meaningfulness graph, which helps to predict matching validity according to image overlap and pixel similarity. Finally, we propose an automatic procedure to estimate automatically all matching parameters. This work is evaluated qualitatively and quantitatively using a standard benchmarking dataset and by conducting stereo matching experiments between images captured at different resolutions. Results confirm the validity of the computer vision/bioinformatics analogy to develop a versatile and accurate low complexity stereo matching algorithm.
Resumo:
A novel non-linear dimensionality reduction method, called Temporal Laplacian Eigenmaps, is introduced to process efficiently time series data. In this embedded-based approach, temporal information is intrinsic to the objective function, which produces description of low dimensional spaces with time coherence between data points. Since the proposed scheme also includes bidirectional mapping between data and embedded spaces and automatic tuning of key parameters, it offers the same benefits as mapping-based approaches. Experiments on a couple of computer vision applications demonstrate the superiority of the new approach to other dimensionality reduction method in term of accuracy. Moreover, its lower computational cost and generalisation abilities suggest it is scalable to larger datasets. © 2010 IEEE.
Resumo:
In this paper, a novel framework for dense pixel matching based on dynamic programming is introduced. Unlike most techniques proposed in the literature, our approach assumes neither known camera geometry nor the availability of rectified images. Under such conditions, the matching task cannot be reduced to finding correspondences between a pair of scanlines. We propose to extend existing dynamic programming methodologies to a larger dimensional space by using a 3D scoring matrix so that correspondences between a line and a whole image can be calculated. After assessing our framework on a standard evaluation dataset of rectified stereo images, experiments are conducted on unrectified and non-linearly distorted images. Results validate our new approach and reveal the versatility of our algorithm.
Resumo:
In this paper, we consider the problem of tracking similar objects. We show how a mean field approach can be used to deal with interacting targets and we compare it with Markov Chain Monte Carlo (MCMC). Two mean field implementations are presented. The first one is more general and uses particle filtering. We discuss some simplifications of the base algorithm that reduce the computation time. The second one is based on suitable Gaussian approximations of probability densities that lead to a set of self-consistent equations for the means and covariances. These equations give the Kalman solution if there is no interaction. Experiments have been performed on two kinds of sequences. The first kind is composed of a single long sequence of twenty roaming ants and was previously analysed using MCMC. In this case, our mean field algorithms obtain substantially better results. The second kind corresponds to selected sequences of a football match in which the interaction avoids tracker coalescence in situations where independent trackers fail.
Resumo:
In this paper, we show how interacting and occluding targets can be tackled successfully within a Gaussian approximation. For that purpose, we develop a general expansion of the mean and covariance of the posterior and we consider a first order approximation of it. The proposed method differs from EKF in that neither a non-linear dynamical model nor a non-linear measurement vector to state relation have to be defined, so it works with any kind of interaction potential and likelihood. The approach has been tested on three sequences (10400, 2500, and 400 frames each one). The results show that our approach helps to reduce the number of failures without increasing too much the computation time with respect to methods that do not take into account target interactions.
Resumo:
Support vector machines (SVMs), though accurate, are not preferred in applications requiring high classification speed or when deployed in systems of limited computational resources, due to the large number of support vectors involved in the model. To overcome this problem we have devised a primal SVM method with the following properties: (1) it solves for the SVM representation without the need to invoke the representer theorem, (2) forward and backward selections are combined to approach the final globally optimal solution, and (3) a criterion is introduced for identification of support vectors leading to a much reduced support vector set. In addition to introducing this method the paper analyzes the complexity of the algorithm and presents test results on three public benchmark problems and a human activity recognition application. These applications demonstrate the effectiveness and efficiency of the proposed algorithm.
--------------------------------------------------------------------------------