843 resultados para SCHEDULING OF GRID TASKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sleep spindles have been found to increase following an intense period of learning on a combination of motor tasks. It is not clear whether these changes are task specific, or a result of learning in general. The current study investigated changes in sleep spindles and spectral power following learning on cognitive procedural (C-PM), simple procedural (S-PM) or declarative (DM) learning tasks. It was hypothesized that S-PM learning would result in increases in Sigma power during Non-REM sleep, whereas C-PM and DM learning would not affect Sigma power. It was also hypothesized that DM learning would increase Theta power during REM sleep, whereas S-PM and C-PM learning would not affect Theta power. Thirty-six participants spent three consecutive nights in the sleep laboratory. Baseline polysomnographic recordings were collected on night 2. Participants were randomly assigned to one of four conditions: C-PM, S-PM, DM or control (C). Memory task training occurred on night 3 followed by polysomnographic recording. Re-testing on respective memory tasks occurred one-week following training. EEG was sampled at 256Hz from 16 sites during sleep. Artifact-free EEG from each sleep stage was submitted to power spectral analysis. The C-PM group made significantly fewer errors, the DM group recalled more, and the S-PM improved on performance from test to re-test. There was a significant night by group interaction for the duration of Stage 2 sleep. Independent t-tests revealed that the S-PM group had significantly more Stage 2 sleep on the test night than the C group. The C-PM and the DM group did not differ from controls in the duration of Stage 2 sleep on test night. There was no significant change in the duration of slow wave sleep (SWS) or REM sleep. Sleep spindle density (spindles/minute) increased significantly from baseline to test night following S-PM learning, but not for C-PM, DM or C groups. This is the first study to have shown that the same pattern of results was found for spindles in SWS. Low Sigma power (12-14Hz) increased significantly during SWS following S-PM learning but not for C-PM, DM or C groups. This effect was maximal at Cz, and the largest increase in Sigma power was at Oz. It was also found that Theta power increased significantly during REM sleep following DM learning, but not for S-PM, C-PM or C groups. This effect was maximal at Cz and the largest change in Theta power was observed at Cz. These findings are consistent with the previous research that simple procedural learning is consolidated during Stage 2 sleep, and provide additional data to suggest that sleep spindles across all non-REM stages and not just Stage 2 sleep may be a mechanism for brain plasticity. This study also provides the first evidence to suggest that Theta activity during REM sleep is involved in memory consolidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigates the usefulness of a multi-method approach to the measurement of reading motivation and achievement. A sample of 127 elementary and middle-school children aged 10 to 14 responded to measures of motivation, attributions, and achievement both longitudinally and in a challenging reading context. Novel measures of motivation and attributions were constructed, validated, and utilized to examine the relationship between ~ motivation, attributions, and achievement over a one-year period (Study I). The impact of classroom contexts and instructional practices was also explored through a study of the influence of topic interest and challenge on motivation, attributions, and persistence (Study II), as well as through interviews with children regarding motivation and reading in the classroom (Study III). Creation and validation of novel measures of motivation and attributions supported the use of a self-report measure of motivation in situation-specific contexts, and confirmed a three-factor structure of attributions for reading performance in both hypothetical and situation-specific contexts. A one-year follow up study of children's motivation and reading achievement demonstrated declines in all components of motivation beginning at age 10 through 12, and particularly strong decreases in motivation with the transition to middle school. Past perceived competence for reading predicted current achievement after controlling for past achievement, and showed the strongest relationships with reading-related skills in both elementary and middle school. Motivation and attributions were strongly related, and children with higher motivation Fulmer III displayed more adaptive attributions for reading success and failure. In the context of a developmentally inappropriate challenging reading task, children's motivation for reading, especially in terms of perceived competence, was threatened. However, interest in the story buffered some ofthe negative impacts of challenge, sustaining children's motivation, adaptive attributions, and reading persistence. Finally, children's responses during interviews outlined several emotions, perceptions, and aspects of reading tasks and contexts that influence reading motivation and achievement. Findings revealed that children with comparable motivation and achievement profiles respond in a similar way to particular reading situations, such as excessive challenge, but also that motivation is dynamic and individualistic and can change over time and across contexts. Overall, the present study outlines the importance of motivation and adaptive attributions for reading success, and the necessity of integrating various methodologies to study the dynamic construct of achievement motivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This arts-based thesis, written from my perspective as a Manitoba Mennonite woman and English Language Arts educator, is a memoir of books and reading. As a voracious reader, I am dismayed by the general perception of literacy in public schools as being a set of measureable tasks, and I have found that reading, in particular, has become divorced from its traditional link to life-giving and sacred things. In this thesis, I used life writing to share some of my reading history to illustrate, in part, the degree to which books may enrich our lives by helping us understand the past, present, and future - but only if we allow them to do so.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This case study of curriculum at Dubai Women's College (DWC) examines perceptions of international educators who designed and implemented curriculum for female Emirati higher-educational students in the UAE, and sheds light on the complex social, cultural, and religious factors affecting educational practice. Participants were faculty and supervisors, mainly foreign nationals, while students at DWC are exclusively Emirati. Theories prominent in this study are: constructivist learning theory, trans formative curriculum theory, and sociological theory. Change and empowerment theory figure prominently in this study. Findings reveal this unique group of educators understand curriculum theory as a "contextualized" construct and argue that theory and practice must be viewed through an international lens of religious, cultural, and social contexts. As well, the study explores how mandated "standards" in education-in the form of the International English Language Testing System (IEL TS) and integrated, constructivist curriculum, as taught in the Higher Diploma Year 1 program-function as dual curricular emphases in this context. The study found that tensions among these dual emphases existed and were mediated through specific strategies, including the use of authentic texts to mirror the IEL TS examination during in-class activities, and the relevance of curricular tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Youth-Adult Partnerships (Y-APs) have been found to foster youth engagement and positive youth development. However, existing research tends to confound the characteristics of Y-APs with their general outcomes and the existing methods of evaluating Y-APs tend to be based on correlational methodologies. I sought to create a measure of Y-AP success that did not confound the characteristics of a successful Y-AP with outcomes. Using the existing literature as a guide, three components were selected for inclusion in the Y-AP success measure: 1) perceptions of productivity; 2) positive affect; and 3) having one's contributions welcomed and considered. Using this new measure, I tested a model to assess how adult warmth and expertise interacted with task difficulty to influence three components of Y-AP success. Participants included 402 university students (M = 19.27, SD = 1.28, 89.1 % female) from Brock University and Cape Breton University. Video clips of an adult, depicting all possible combinations of warmth and expertise were created for this study, as well as a pair of hypothetical tasks designed to elicit differential degrees of perceived difficulty. Participants were exposed to one video of a hypothetical adult and two hypothetical tasks and responded to the Y-AP success measures twice, for each ofthe tasks. Results from mixed-model ANOVAs revealed that the adult and task characteristics were not consistently related to all components of Y-AP success. However, several significant interactions suggested that youth perceptions of task difficulty and their impressions of adult partners influenced the extent to which they expected a Y-AP to be successful. The results are discussed in the context of how they support or conflict with the existing literature and serve as a first step in the inference of causality within the study of Y-APs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Feedback-Related Negativity (FRN) is thought to reflect the dopaminergic prediction error signal from the subcortical areas to the ACC (i.e., a bottom-up signal). Two studies were conducted in order to test a new model of FRN generation, which includes direct modulating influences of medial PFC (i.e., top-down signals) on the ACC at the time of the FRN. Study 1 examined the effects of one’s sense of control (top-down) and of informative cues (bottom-up) on the FRN measures. In Study 2, sense of control and instruction-based (top-down) and probability-based expectations (bottom-up) were manipulated to test the proposed model. The results suggest that any influences of medial PFC on the activity of the ACC that occur in the context of incentive tasks are not direct. The FRN was shown to be sensitive to salient stimulus characteristics. The results of this dissertation partially support the reinforcement learning theory, in that the FRN is a marker for prediction error signal from subcortical areas. However, the pattern of results outlined here suggests that prediction errors are based on salient stimulus characteristics and are not reward specific. A second goal of this dissertation was to examine whether ACC activity, measured through the FRN, is altered in individuals at-risk for problem-gambling behaviour (PG). Individuals in this group were more sensitive to the valence of the outcome in a gambling task compared to not at-risk individuals, suggesting that gambling contexts increase the sensitivity of the reward system to valence of the outcome in individuals at risk for PG. Furthermore, at-risk participants showed an increased sensitivity to reward characteristics and a decreased response to loss outcomes. This contrasts with those not at risk whose FRNs were sensitive to losses. As the results did not replicate previous research showing attenuated FRNs in pathological gamblers, it is likely that the size and time of the FRN does not change gradually with increasing risk of maladaptive behaviour. Instead, changes in ACC activity reflected by the FRN in general can be observed only after behaviour becomes clinically maladaptive or through comparison between different types of gain/loss outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application ofgrid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

link to the documents which describe each of the tasks, one of which students may choose to submit

Relevância:

100.00% 100.00%

Publicador:

Resumo:

READ the guidance notes, then attempt the tasks CONTENTS: Guidance notes - feedback from previous years Difference between reflection and essay Collection of suggested tasks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the reliability of Neupsilin Brief Neuropsychological Assessment Instrument, a brief battery developed in Brazil. Hundred two Brazilian man and women participated, from 18 to 40 years of age. It was evaluated the test-retest reliability of the Neupsilin tasks and the reliability of the correction of the constructional praxis task by different evaluators. The data were analyzed by Spearman’s correlation, intraclass correlation and Cronbach’s alpha. Language, memory, praxis and executive functions presented the highest correlations in the test-retest analyses. The agreement in the correction of the constructional praxis task was moderate to high. The results indicate temporal reliability of Neupsilin tasks and inter-rater agreement in the correction of the constructional praxis task. Suggestions to improve the tasks, the validity and reliability of Neupsilin were presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La coordinació i assignació de tasques en entorns distribuïts ha estat un punt important de la recerca en els últims anys i aquests temes són el cor dels sistemes multi-agent. Els agents en aquests sistemes necessiten cooperar i considerar els altres agents en les seves accions i decisions. A més a més, els agents han de coordinar-se ells mateixos per complir tasques complexes que necessiten més d'un agent per ser complerta. Aquestes tasques poden ser tan complexes que els agents poden no saber la ubicació de les tasques o el temps que resta abans de que les tasques quedin obsoletes. Els agents poden necessitar utilitzar la comunicació amb l'objectiu de conèixer la tasca en l'entorn, en cas contrari, poden perdre molt de temps per trobar la tasca dins de l'escenari. De forma similar, el procés de presa de decisions distribuït pot ser encara més complexa si l'entorn és dinàmic, amb incertesa i en temps real. En aquesta dissertació, considerem entorns amb sistemes multi-agent amb restriccions i cooperatius (dinàmics, amb incertesa i en temps real). En aquest sentit es proposen dues aproximacions que permeten la coordinació dels agents. La primera és un mecanisme semi-centralitzat basat en tècniques de subhastes combinatòries i la idea principal es minimitzar el cost de les tasques assignades des de l'agent central cap als equips d'agents. Aquest algoritme té en compte les preferències dels agents sobre les tasques. Aquestes preferències estan incloses en el bid enviat per l'agent. La segona és un aproximació d'scheduling totalment descentralitzat. Això permet als agents assignar les seves tasques tenint en compte les preferències temporals sobre les tasques dels agents. En aquest cas, el rendiment del sistema no només depèn de la maximització o del criteri d'optimització, sinó que també depèn de la capacitat dels agents per adaptar les seves assignacions eficientment. Addicionalment, en un entorn dinàmic, els errors d'execució poden succeir a qualsevol pla degut a la incertesa i error de accions individuals. A més, una part indispensable d'un sistema de planificació és la capacitat de re-planificar. Aquesta dissertació també proveeix una aproximació amb re-planificació amb l'objectiu de permetre als agent re-coordinar els seus plans quan els problemes en l'entorn no permeti la execució del pla. Totes aquestes aproximacions s'han portat a terme per permetre als agents assignar i coordinar de forma eficient totes les tasques complexes en un entorn multi-agent cooperatiu, dinàmic i amb incertesa. Totes aquestes aproximacions han demostrat la seva eficiència en experiments duts a terme en l'entorn de simulació RoboCup Rescue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La aplicación de materiales compuestos de matriz polimérica reforzados mediante fibras largas (FRP, Fiber Reinforced Plastic), está en gradual crecimiento debido a las buenas propiedades específicas y a la flexibilidad en el diseño. Uno de los mayores consumidores es la industria aeroespacial, dado que la aplicación de estos materiales tiene claros beneficios económicos y medioambientales. Cuando los materiales compuestos se aplican en componentes estructurales, se inicia un programa de diseño donde se combinan ensayos reales y técnicas de análisis. El desarrollo de herramientas de análisis fiables que permiten comprender el comportamiento mecánico de la estructura, así como reemplazar muchos, pero no todos, los ensayos reales, es de claro interés. Susceptibilidad al daño debido a cargas de impacto fuera del plano es uno de los aspectos de más importancia que se tienen en cuenta durante el proceso de diseño de estructuras de material compuesto. La falta de conocimiento de los efectos del impacto en estas estructuras es un factor que limita el uso de estos materiales. Por lo tanto, el desarrollo de modelos de ensayo virtual mecánico para analizar la resistencia a impacto de una estructura es de gran interés, pero aún más, la predicción de la resistencia residual después del impacto. En este sentido, el presente trabajo abarca un amplio rango de análisis de eventos de impacto a baja velocidad en placas laminadas de material compuesto, monolíticas, planas, rectangulares, y con secuencias de apilamiento convencionales. Teniendo en cuenta que el principal objetivo del presente trabajo es la predicción de la resistencia residual a compresión, diferentes tareas se llevan a cabo para favorecer el adecuado análisis del problema. Los temas que se desarrollan son: la descripción analítica del impacto, el diseño y la realización de un plan de ensayos experimentales, la formulación e implementación de modelos constitutivos para la descripción del comportamiento del material, y el desarrollo de ensayos virtuales basados en modelos de elementos finitos en los que se usan los modelos constitutivos implementados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis addresses the problem of learning in physical heterogeneous multi-agent systems (MAS) and the analysis of the benefits of using heterogeneous MAS with respect to homogeneous ones. An algorithm is developed for this task; building on a previous work on stability in distributed systems by Tad Hogg and Bernardo Huberman, and combining two phenomena observed in natural systems, task partition and hierarchical dominance. This algorithm is devised for allowing agents to learn which are the best tasks to perform on the basis of each agent's skills and the contribution to the team global performance. Agents learn by interacting with the environment and other teammates, and get rewards from the result of the actions they perform. This algorithm is specially designed for problems where all robots have to co-operate and work simultaneously towards the same goal. One example of such a problem is role distribution in a team of heterogeneous robots that form a soccer team, where all members take decisions and co-operate simultaneously. Soccer offers the possibility of conducting research in MAS, where co-operation plays a very important role in a dynamical and changing environment. For these reasons and the experience of the University of Girona in this domain, soccer has been selected as the test-bed for this research. In the case of soccer, tasks are grouped by means of roles. One of the most interesting features of this algorithm is that it endows MAS with a high adaptability to changes in the environment. It allows the team to perform their tasks, while adapting to the environment. This is studied in several cases, for changes in the environment and in the robot's body. Other features are also analysed, especially a parameter that defines the fitness (biological concept) of each agent in the system, which contributes to performance and team adaptability. The algorithm is applied later to allow agents to learn in teams of homogeneous and heterogeneous robots which roles they have to select, in order to maximise team performance. The teams are compared and the performance is evaluated in the games against three hand-coded teams and against the different homogeneous and heterogeneous teams built in this thesis. This section focuses on the analysis of performance and task partition, in order to study the benefits of heterogeneity in physical MAS. In order to study heterogeneity from a rigorous point of view, a diversity measure is developed building on the hierarchic social entropy defined by Tucker Balch. This is adapted to quantify physical diversity in robot teams. This tool presents very interesting features, as it can be used in the future to design heterogeneous teams on the basis of the knowledge on other teams.