875 resultados para Running Speed
Resumo:
The performance of a small high-speed liquid jet apparatus is described. Water jets with velocities from 200 to 700 m/s were obtained by firing a deformable lead slug from an air rifle into a stainless steel nozzle containing water sealed with a rubber diaphragm. Nozzle devices using the impact extrusion (IE) and cumulation (CU) methods were designed to generate the jets. The effect of the nozzle diameter and the downstream distance on the jet velocity is examined. The injection sequences are visualized using both shadowgraphy and schlieren photography. The difference between the IE and CU methods of jet generation is found.
Resumo:
The present paper describes experimental investigation on the flow pattern and hydrodynamic effect of underwater gas jets from supersonic and sonic nozzles operated in correct- and imperfect expansion conditions. The flow visualizations show that jetting is the flow regime for the submerged gas injection at a high speed in the parameter range under consideration. The obtained results indicate that high-speed gas jets in still water induce large pressure pulsations upstream of the nozzle exit and the presence of shock-cell structure in the over- and under-expanded jets leads to an increase in the intensity of the jet-induced hydrodynamic pressure.
Resumo:
The experimental and theoretical studies are reported in this paper for the head-on collisions of a liquid droplet with another of the same fluid resting on a solid substrate. The droplet on the hydrophobic polydimethylsiloxane (PDMS) substrate remains in a shape of an approximately spherical segment and is isometric to an incoming droplet. The colliding process of the binary droplets was recorded with high-speed photography. Head-on collisions saw four different types of response in our experiments: complete rebound, coalescence, partial rebound With conglutination, and coalescence accompanied by conglutination. For a complete rebound, both droplets exhibited remarkable elasticity and the contact time of the two colliding droplets was found to be in the range of 10-20 ms. With both droplets approximately considered as elastic bodies, Hertz contact theory was introduced to estimate the contact time for the complete rebound case. The estimated result Was found to be on the same order of magnitude as the experimental data, which indicates that the present model is reasonable. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A recoverable plate impact testing technology has been developed for studying fracture mechanisms of mode II crack. With this technology, a single duration stress pulse with submicrosecond duration and high loading rates, up to 10(8) MPam(1/2)s(-1), can be produced. Dynamic failure tests of Hard-C 60# steel were carried out under asymmetrical impacting conditions with short stress-pulse loading. Experimental results show that the nucleation and growth of several microcracks ahead of the crack tip, and the interactions between them, induce unsteady crack growth. Failure mode transitions during crack growth, both from mode I crack to mode II and from brittle to ductile fracture, were observed. Based on experimental observations, a discontinuous crack growth model was established. Analysis of the crack growth mechanisms using our model shows that the shear crack extension is unsteady when the extending speed is between the Rayleigh wave speed c(R) and the shear wave speed c(S). However, when the crack advancing speed is beyond c(S), the crack grows at a steady intersonic speed approaching root 2c(S). It also shows that the transient mechanisms, such as nucleation, growth, interaction and coalescence among microcracks, make the main crack speed jump from subsonic to intersonic and the steady growth of all the subcracks causes the main crack to grow at a stable intersonic speed.