979 resultados para Root:shoot ratio
Resumo:
The effects of reductions in cell wall lignin content, manifested by RNA interference suppression of coumaroyl 3'-hydroxylase, on plant growth, water transport, gas exchange, and photosynthesis were evaluated in hybrid poplar trees (Populus alba 3 grandidentata). The growth characteristics of the reduced lignin trees were significantly impaired, resulting in smaller stems and reduced root biomass when compared to wild-type trees, as well as altered leaf morphology and architecture. The severe inhibition of cell wall lignification produced trees with a collapsed xylem phenotype, resulting in compromised vascular integrity, and displayed reduced hydraulic conductivity and a greater susceptibility to wall failure and cavitation. In the reduced lignin trees, photosynthetic carbon assimilation and stomatal conductance were also greatly reduced, however, shoot xylem pressure potential and carbon isotope discrimination were higher and water-use efficiency was lower, inconsistent with water stress. Reductions in assimilation rate could not be ascribed to increased stomatal limitation. Starch and soluble sugars analysis of leaves revealed that photosynthate was accumulating to high levels, suggesting that the trees with substantially reduced cell wall lignin were not carbon limited and that reductions in sink strength were, instead, limiting photosynthesis.
Resumo:
This study uses the reverse salient methodology to contrast subsystems in video game consoles in order to discover, characterize, and forecast the most significant technology gap. We build on the current methodologies (Performance Gap and Time Gap) for measuring the magnitude of Reverse Salience, by showing the effectiveness of Performance Gap Ratio (PGR). The three subject subsystems in this analysis are the CPU Score, GPU core frequency, and video memory bandwidth. CPU Score is a metric developed for this project, which is the product of the core frequency, number of parallel cores, and instruction size. We measure the Performance Gap of each subsystem against concurrently available PC hardware on the market. Using PGR, we normalize the evolution of these technologies for comparative analysis. The results indicate that while CPU performance has historically been the Reverse Salient, video memory bandwidth has taken over as the quickest growing technology gap in the current generation. Finally, we create a technology forecasting model that shows how much the video RAM bandwidth gap will grow through 2019 should the current trend continue. This analysis can assist console developers in assigning resources to the next generation of platforms, which will ultimately result in longer hardware life cycles.
Resumo:
A global framework for linear stability analyses of traffic models, based on the dispersion relation root locus method, is presented and is applied taking the example of a broad class of car-following (CF) models. This approach is able to analyse all aspects of the dynamics: long waves and short wave behaviours, phase velocities and stability features. The methodology is applied to investigate the potential benefits of connected vehicles, i.e. V2V communication enabling a vehicle to send and receive information to and from surrounding vehicles. We choose to focus on the design of the coefficients of cooperation which weights the information from downstream vehicles. The coefficients tuning is performed and different ways of implementing an efficient cooperative strategy are discussed. Hence, this paper brings design methods in order to obtain robust stability of traffic models, with application on cooperative CF models
Resumo:
A combined data matrix consisting of high performance liquid chromatography–diode array detector (HPLC–DAD) and inductively coupled plasma-mass spectrometry (ICP-MS) measurements of samples from the plant roots of the Cortex moutan (CM), produced much better classification and prediction results in comparison with those obtained from either of the individual data sets. The HPLC peaks (organic components) of the CM samples, and the ICP-MS measurements (trace metal elements) were investigated with the use of principal component analysis (PCA) and the linear discriminant analysis (LDA) methods of data analysis; essentially, qualitative results suggested that discrimination of the CM samples from three different provinces was possible with the combined matrix producing best results. Another three methods, K-nearest neighbor (KNN), back-propagation artificial neural network (BP-ANN) and least squares support vector machines (LS-SVM) were applied for the classification and prediction of the samples. Again, the combined data matrix analyzed by the KNN method produced best results (100% correct; prediction set data). Additionally, multiple linear regression (MLR) was utilized to explore any relationship between the organic constituents and the metal elements of the CM samples; the extracted linear regression equations showed that the essential metals as well as some metallic pollutants were related to the organic compounds on the basis of their concentrations
Resumo:
The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16–18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.
Resumo:
Taylor (1948) suggested the method for determination of the settlement, d, corresponding to 90% consolidation utilizing the characteristics of the degree of consolidation, U, versus the square root of the time factor, square root of T, plot. Based on the properties of the slope of U versus square root of T curve, a new method is proposed to determine d corresponding to any U above 70% consolidation for evaluation of the coefficient of consolidation, Cn. The effects of the secondary consolidation on the Cn value at different percentages of consolidation can be studied. Cn, closer to the field values, can be determined in less time as compared to Taylor's method. At any U in between 75 and 95% consolidation, Cn(U) due to the new method lies in between Taylor's Cn and Casagrande's Cn.
Resumo:
Axillary shoot proliferation was obtained using explants of Eucalyptus grandis L. juvenile and mature stages on a defined medium. Murashige and Skoog medium (MS) supplemented with benzyladenine (BA), naphthalene acetic acid (NAA) and additional thiamine. Excised shoots were induced to root on a sequence of three media: (1) White's medium containing indoleacetic acid (IAA), NAA and indole butyric acid; (IBA), (2) half-strength MS medium with charcoal and (3) half-strength MS liquid medium. The two types of explants differed in rooting response, with juvenile-derived shoots giving 60% rooting and adult-derived ones only 35%. Thus, the factors limiting cloning of selected trees in vitro are determined to be those controlling rooting of shoots in E. grandis.
Resumo:
The inheritance of resistance to root-lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half-diallel design of F1 and F2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line 'GS50a', the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F1 and F2 populations. The synthetic hexaploid wheat line 'CPI133872' was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than 'GS50a'. The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes
Resumo:
Rhizoctonia solani AG-2-2 was isolated from wilting and dying plants of sulla (Hedysarum coronarium), which is currently being assessed in eastern and southern Australia for its potential as a pasture and forage legume. Infected plants in the field had extensive rotting of the taproot, lateral roots and crown. Koch's postulates were fulfilled using three inoculation methods. The disease may pose a considerable threat to the potential use of H. coronarium in the dryland, grazing farming systems of Australia, with resistance offering the most viable option for minimising its impact.
Resumo:
Based on a simple picture of speckle phenomena in optical interferometry it is shown that the recent signal-to-noise ratio estimate for the so called bispectrum, due to Wirnitzer (1985), does not possess the right limit when photon statistics is unimportant. In this wave-limit, which is true for bright sources, his calculations over-estimate the signal-to-noise ratio for the bispectrum by a factor of the order of the square root of the number of speckles.
Resumo:
Alternative breeding strategies, based on colchicine-induced autotetraploids, have been proposed as a means of introducing disease resistance into banana breeding programs. This paper describes techniques for the in vitro induction of banana autotetraploids by the use of colchicine on cultured explants. The technique can be readily applied and large numbers of autotetraploids produced. The optimum treatment involved immersing shoot tips in a 0.5% w/v colchicine solution for 2 h under aseptic conditions. Dimethyl sulfoxide (DMSO) was applied with the colchicine treatments to increase cell permeability and so absorption of colchicine, resulting in the optimum treatment unchanged at 0.5% colchicine, but including the addition of 2% v/v DMSO. Of the shoot tips treated over 30% were induced to the autotetraploid level. Methods for in vitro selection of induced tetraploids from treated diploid plantlets were also developed. Tetraploid plants were more robust with thicker pseudostems, roots and broader leaves than diploids and they could be selected on these morphological characteristics. Mean stornatal lengths of diploid banana plants growing in vitro were significantly smaller (16.0 pm) than the tetraploids (26.9pm) and were used as a more reliable indicator of ploidy than morphological criteria alone. A root tip squash technique using carbol fuchsin was developed for positive confirmation of ploidy change by chromosome counts. Although chimerism and reversion to the diploid form occurred, it was not considered a problem because of the large number of autotetraploids induced. Stable autotetraploids were recovered and established in the field and were characterised by their large, drooping leaves and thick pseudostems. They have retained these characteristics for more than 3 years in the field.
Resumo:
Phosphonate fungicides are used widely in the control of diseases caused by Phytophthora cinnamomi Rands. For the most part phosphonate is seen as a safe to use on crops with phytotoxicity rare. However, recent research has shown that phosphonate has detrimental effects on the floral biology of some indigenous Australian plants. Since phosphonate fungicides are regularly used for the control of Phytophthora root rot in avocados, research was carried out to study the translocation of phosphonate fungicide in 'Hass' trees and any effects on their floral biology. Field-grown trees were sprayed with 0, 0.06 or 0.12 M mono-dipotassium phosphonate (pH 7.2) at summer flush maturity, floral bud break or anthesis. Following treatment, phosphonic acid concentrations were determined in leaves, roots, inflorescence rachi and flowers and in vitro pollen germination and pollen tube growth studied. Phosphonic acid concentration in the roots and floral parts was related to their sink strength at the respective times of application with concentration in roots highest (36.9.mg g±1) after treatment at summer flush maturity and in flowers (234.7 mg g±1) after treatment during early anthesis. Phosphonate at >0.03 M was found to be significantly phytotoxic to in vitro pollen germination and pollen tube growth. However, this rate gave a concentration far in excess of that measured in plant tissues following standard commercial applications of mono-dipotassium phosphonate fungicide. There was a small effect on pollen germination and pollen tube growth when 0.06 and 0.12 M mono-dipotassium phosphonate was applied during early anthesis. However, under favourable pollination and fruit set conditions it is not expected to have commercial impact on tree yield. However, there may be detrimental commercial implications from phosphonate sprays at early anthesis if unfavourable climatic conditions for pollination and fruit set subsequently occur. A commercial implication from this study is that phosphonic acid root concentrations can be elevated and maintained with strategic foliar applications of phosphonate fungicide timed to coincide with peaks in root sink strength. These occur at the end of the spring and summer flushes when shoot growth is relatively quiescent. Additional foliar applications may be advantageous in under high disease-pressure situations but where possible should be timed to minimize overlap with other significant growth events in the tree such as rapid inflorescence, and fruit development and major vegetative flushing.
Resumo:
Strawberry runner production areas in Queensland are assessed for the presence of Pratylenchus vulnus (lesion nematode) and Meloidogyne hapla (root-knot nematode) as part of the approval process for sites used in runner production under the approved runner scheme. M. hapla is known to infest strawberry. The ability of three other Meloidogyne species occurring in Queensland to infest this host was investigated. The species M. arenaria, M. incognita and M. javanica, in addition to M. hapla, were able to reproduce on strawberry roots of the cultivar 'Joy', which sustained higher nematode reproduction rates than 'Jewel' and 'Sweet Charlie'. The ability of species other than M. hapla to infest strawberry needs to be recognised in site selection for runner production, and in screening cultivars for resistance to nematodes.
Resumo:
Brassicaceae plants have the potential as part of an integrated approach to replace fumigant nematicides, providing the biofumigation response following their incorporation is not offset by reproduction of plant-parasitic nematodes on their roots. Forty-three Brassicaceae cultivars were screened in a pot trial for their ability to reduce reproduction of three root-knot nematode isolates from north Queensland, Australia: M. arenaria (NQ1), M. javanica (NQ2) and M. arenaria race 2 (NQ5/7). No cultivar was found to consistently reduce nematode reproduction relative to forage sorghum, the current industry standard, although a commercial fodder radish (Raphanus sativus) and a white mustard (Sinapis alba) line were consistently as resistant to the formation of galls as forage sorghum. A second pot trial screened five commercially available Brassicaceae cultivars, selected for their biofumigation potential, for resistance to two nematode species, M. javanica (NQ2) and M. arenaria (NQ5/7). The fodder radish cv. Weedcheck, was found to be as resistant as forage sorghum to nematode reproduction. A multivariate cluster analysis using the resistance measurements, gall index, nematode number per g of root and multiplication for two nematode species (NQ2 and NQ5/7) confirmed the similarity in resistance between the radish cultivar and forage sorghum. A field trial confirmed the resistance of the fodder radish cv. Weedcheck, with a similar reduction in the number of Meloidogyne spp. juveniles recovered from the roots 8 weeks after planting. The use of fodder radish cultivars as biofumigation crops to manage root-knot nematodes in tropical vegetable production systems deserves further investigation.
Resumo:
Genetic control of vegetative propagation traits was described for a second-generation, outbred, intersectional hybrid family (N = 208) derived from two species, Corymbia torelliana (F. Muell.) K.D. Hill & L.A.S. Johnson and Corymbia variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, which contrast for propagation characteristics and in their capacity to develop lignotubers. Large phenotypic variances were evident for rooting and most other propagation traits, with significant proportions attributable to differences between clones (broad-sense heritabilities 0.2-0.5). Bare root assessment of rooting rate and root quality parameters tended to have the highest heritabilities, whereas rooting percentage based on root emergence from pots and shoot production were intermediate. Root biomass and root initiation had the lowest heritabilities. Strong favourable genetic correlations were found between rooting percentage and root quality traits such as root biomass, volume, and length. Lignotuber development on a seedling was associated with low rooting and a tendency to poor root quality in cuttings and was in accord with the persistence of species parent types due to gametic phase disequilibrium. On average, nodal cuttings rooted more frequently and with higher quality root systems, but significant cutting type x genotype interaction indicated that for some clones, higher rooting rates were obtained from tips. Low germination, survival of seedlings, and rooting rates suggested strong hybrid breakdown in this family.