971 resultados para Rice Bran Oil
Resumo:
Correlations between oil and agricultural commodities have varied over previous decades, impacted by renewable fuels policy and turbulent economic conditions. We estimate smooth transition conditional correlation models for 12 agricultural commodities and WTI crude oil. While a structural change in correlations occurred concurrently with the introduction of biofuel policy, oil and food price levels are also key influences. High correlation between biofuel feedstocks and oil is more likely to occur when food and oil price levels are high. Correlation with oil returns is strong for biofuel feedstocks, unlike with other agricultural futures, suggesting limited contagion from energy to food markets.
Resumo:
Current understanding is that high planting density has the potential to suppress weeds and crop-weed interactions can be exploited by adjusting fertilizer rates. We hypothesized that (a) high planting density can be used to suppress Rottboellia cochinchinensis growth and (b) rice competitiveness against this weed can be enhanced by increasing nitrogen (N) rates. We tested these hypotheses by growing R. cochinchinensis alone and in competition with four rice planting densities (0, 100, 200, and 400 plants m-2) at four N rates (0, 50, 100, and 150 kg ha-1). At 56 days after sowing (DAS), R. cochinchinensis plant height decreased by 27-50 %, tiller number by 55-76 %, leaf number by 68-84 %, leaf area by 70-83 %, leaf biomass by 26-90 %, and inflorescence biomass by 60-84 %, with rice densities ranging from 100 to 400 plants m-2. All these parameters increased with an increase in N rate. Without the addition of N, R. cochinchinensis plants were 174 % taller than rice; whereas, with added N, they were 233 % taller. Added N favored more weed biomass production relative to rice. R. cochinchinensis grew taller than rice (at all N rates) to avoid shade, which suggests that it is a "shade-avoiding" plant. R. cochinchinensis showed this ability to reduce the effect of rice interference through increased leaf weight ratio, specific stem length, and decreased root-shoot weight ratio. This weed is more responsive to N fertilizer than rice. Therefore, farmers should give special consideration to the application timing of N fertilizer when more N-responsive weeds are present in their field. Results suggest that the growth and seed production of R. cochinchinensis can be decreased considerably by increasing rice density to 400 plants m-2. There is a need to integrate different weed control measures to achieve complete control of this noxious weed.
Resumo:
Dry seeding of aman rice can facilitate timely crop establishment and early harvest and thus help to alleviate the monga (hunger) period in the High Ganges Flood Plain of Bangladesh. Dry seeding also offers many other potential benefits, including reduced cost of crop establishment and improved soil structure for crops grown in rotation with rice. However, the optimum time for seeding in areas where farmers have access to water for supplementary irrigation has not been determined. We hypothesized that earlier sowing is safer, and that increasing seed rate mitigates the adverse effects of significant rain after sowing on establishment and crop performance. To test these hypotheses, we analyzed long term rainfall data, and conducted field experiments on the effects of sowing date (target dates of 25 May, 10 June, 25 June, and 10 July) and seed rate (20, 40, and 60 kg ha−1) on crop establishment, growth, and yield of dry seeded Binadhan-7 (short duration, 110–120 d) during the 2012 and 2013 rainy seasons. Wet soil as a result of untimely rainfall usually prevented sowing on the last two target dates in both years, but not on the first two dates. Rainfall analysis also suggested a high probability of being able to dry seed in late May/early June, and a low probability of being able to dry seed in late June/early July. Delaying sowing from 25 May/10 June to late June/early July usually resulted in 20–25% lower plant density and lower uniformity of the plant stand as a result of rain shortly after sowing. Delaying sowing also reduced crop duration, and tillering or biomass production when using a low seed rate. For the late June/early July sowings, there was a strong positive relationship between plant density and yield, but this was not the case for earlier sowings. Thus, increasing seed rate compensated for the adverse effect of untimely rains after sowing on plant density and the shorter growth duration of the late sown crops. The results indicate that in this region, the optimum date for sowing dry seeded rice is late May to early June with a seed rate of 40 kg ha−1. Planting can be delayed to late June/early July with no yield loss using a seed rate of 60 kg ha−1, but in many years, the soil is simply too wet to be able to dry seed at this time due to rainfall.
Resumo:
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm 615 cm, 25 cm 617 cm, 25 cm 619 cm, 25 cm 621 cm, and 25 cm 623 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm615 cm to 25 cm623 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm617 cm to 25 cm623 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm 617 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm617 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice
Resumo:
The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.
Resumo:
The critical crop-weed competition period in a dry-seeded rice system is an important consideration in formulating weed management strategies. Field experiments were conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to determine the extent of yield loss in two different rice cultivars (PR 114 and PR 115) with different periods of weed interference. Twelve weed control timings were used to identify critical periods of weed competition in dry-seeded rice. PR 114, a long-duration rice cultivar (145 d) having slower initial growth than PR 115 (125 d), was more prone to yield losses. In both years, 100% yield loss was observed where weeds were not controlled throughout the season. In weed-free plots, the grain yield of PR 114 was 6.39-6.80 t ha-1, for PR 115, it was 6.49-6.87 t ha-1. Gompertz and logistic equations fitted to yield data in response to increasing periods of weed control and weed interference showed that, PR 114 had longer critical periods than PR 115. Critical weed-free periods to achieve 95% of weed-free yield for PR 114 was longer than for PR 115 by 31 days in 2012 and 26 days in 2013. Weed infestation also influenced the duration of critical periods. Higher weed pressure in 2012 than in 2013 increased the duration of the critical period of crop-weed competition in that year. The identification of critical crop-weed competition periods for different cultivars will facilitate improved decision-making regarding the timing of weed control and the adoption of cultivars having high weed-suppressing abilities. This will also contribute to the development of integrated weed management in dry-seeded rice systems.
Resumo:
Cultural practices alter patterns of crop growth and can modify dynamics of weed-crop competition, and hence need to be investigated to evolve sustainable weed management in dry-seeded rice (DSR). Studies on weed dynamics in DSR sown at different times under two tillage systems were conducted at the Agronomic Research Farm, University of Agriculture, Faisalabad, Pakistan. A commonly grown fine rice cultivar 'Super Basmati' was sown on 15th June and 7th July of 2010 and 2011 under zero-till (ZT) and conventional tillage (CONT) and it was subjected to different durations of weed competition [10, 20, 30, 40, and 50 days after sowing (DAS) and season-long competition]. Weed-free plots were maintained under each tillage system and sowing time for comparison. Grassy weeds were higher under ZT while CONT had higher relative proportion of broad-leaved weeds in terms of density and biomass. Density of sedges was higher by 175% in the crop sown on the 7th July than on the 15th June. Delaying sowing time of DSR from mid June to the first week of July reduced weed density by 69 and 43% but their biomass remained unaffected. Tillage systems had no effect on total weed biomass. Plots subjected to season-long weed competition had mostly grasses while broad-leaved weeds were not observed at harvest. In the second year of study, dominance of grassy weeds was increased under both tillage systems and sowing times. Significantly less biomass (48%) of grassy weeds was observed under CONT than ZT in 2010; however, during 2011, this effect was non-significant. Trianthema portulacastrum and Dactyloctenium aegyptium were the dominant broad-leaved and grassy weeds, respectively. Cyperus rotundus was the dominant sedge weed, especially in the crop sown on the 7th July. Relative yield loss (RYL) ranged from 3 to 13% and 7 to16% when weeds were allowed to compete only for 20 DAS. Under season-long weed competition, RYL ranged from 68 to 77% in 2010 and 74 to80% in 2011. The sowing time of 15th June was effective in minimizing weed proliferation and rectifying yield penalty associated with the 7th July sowing. The results suggest that DSR in Pakistan should preferably be sown on 15th June under CONT systems and weeds must be controlled before 20 DAS to avoid yield losses. Successful adoption of DSR at growers' fields in Pakistan will depend on whether growers can control weeds and prevent shifts in weed population from intractable weeds to more difficult-to-control weeds as a consequence of DSR adoption.
Resumo:
Weed management is the major challenge to the success of dry-seeded rice (DSR). A field study was conducted during the dry seasons of 2013 and 2014at the International Rice Research Institute to evaluate the performance of herbicides combined with mechanical weeding in DSR. The lowest weed density and biomass were found in the treatment oxadiazon followed by (fb) fenoxaprop+ethoxysulfuron fb 2,4-D fb mechanical weeding (MW) at 42 days after sowing (DAS). However, this treatment had similar weed density and biomass to the treatments oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D,oxadiazon fb bispyribac-sodium fb 2,4-D, and oxadiazon fb MW (28 DAS) fb MW (42 DAS). The highest weed density and biomass were recorded in the treatment oxadiazon fb MW (28 DAS) and oxadiazon fb 2,4-D. Higher grain yield (5.3-5.8tha-1) was produced in the plots that received oxadiazon fb fenoxaprop+ethoxysulfuron fb 2,4-D fb MW(42 DAS) and oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D. The results of this study provide sustainable weed management options to farmers growing DSR.
Resumo:
Lower water availability coupled with labor shortage has resulted in the increasing inability of growers to cultivate puddled transplanted rice (PTR). A field study was conducted in the wet season of 2012 and dry season of 2013 to evaluate the performance of five rice establishment methods and four weed control treatments on weed management, and rice yield. Grass weeds were higher in dry-seeded rice (DSR) as compared to PTR and nonpuddled transplanted rice (NPTR). The highest total weed density (225-256plantsm-2) and total weed biomass (315-501gm-2) were recorded in DSR while the lowest (102-129plantsm-2 and 75-387gm-2) in PTR. Compared with the weedy plots, the treatment pretilachlor followed by fenoxaprop plus ethoxysulfuron plus 2,4-D provided excellent weed control. This treatment, however, had a poor performance in NPTR. In both seasons, herbicide efficacy was better in DSR and wet-seeded rice. PTR and DSR produced the maximum rice grain yields. The weed-free plots and herbicide treatments produced 84-614% and 58-504% higher rice grain yield, respectively, than the weedy plots in 2012, and a similar trend was observed in 2013.
Resumo:
Rice production symbolizes the single largest land use for food production on the Earth. The significance of this cereal as a source of energy and income seems overwhelming for millions of people in Asia, representing 90% of global rice production and consumption. Estimates indicate that the burgeoning population will need 25% more rice by 2025 than today's consumption. As the demand for rice is increasing, its production in Asia is threatened by a dwindling natural resource base, socioeconomic limitations, and uncertainty of climatic optima. Transplanting in puddled soil with continuous flooding is a common method of rice crop establishment in Asia. There is a dire need to look for rice production technologies that not only cope with existing limitations of transplanted rice but also are viable, economical, and secure for future food demand.Direct seeding of rice has evolved as a potential alternative to the current detrimental practice of puddling and nursery transplanting. The associated benefits include higher water productivity, less labor and energy inputs, less methane emissions, elimination of time and edaphic conflicts in the rice-wheat cropping system, and early crop maturity. Realization of the yield potential and sustainability of this resource-conserving rice production technique lies primarily in sustainable weed management, since weeds have been recognized as the single largest biological constraint in direct-seeded rice (DSR). Weed competition can reduce DSR yield by 30-80% and even complete crop failure can occur under specific conditions. Understanding the dynamics and outcomes of weed-crop competition in DSR requires sound knowledge of weed ecology, besides production factors that influence both rice and weeds, as well as their association. Successful adoption of direct seeding at the farmers' level in Asia will largely depend on whether farmers can control weeds and prevent shifts in weed populations from intractable weeds to more difficult-to-control weeds as a consequence of direct seeding. Sustainable weed management in DSR comprises all the factors that give DSR a competitive edge over weeds regarding acquisition and use of growth resources. This warrants the need to integrate various cultural practices with weed control measures in order to broaden the spectrum of activity against weed flora. A weed control program focusing entirely on herbicides is no longer ecologically sound, economically feasible, and effective against diverse weed flora and may result in the evolution of herbicide-resistant weed biotypes. Rotation of herbicides with contrasting modes of action in conjunction with cultural measures such as the use of weed-competitive rice cultivars, sowing time, stale seedbed technique, seeding rate, crop row spacing, fertilizer and water inputs and their application method/timing, and manual and mechanical hoeing can prove more effective and need to be optimized keeping in view the type and intensity of weed infestation. This chapter tries to unravel the dynamics of weed-crop competition in DSR. Technological issues, limitations associated with DSR, and opportunities to combat the weed menace are also discussed as a pragmatic approach for sustainable DSR production. A realistic approach to secure yield targets against weed competition will combine the abovementioned strategies and tactics in a coordinated manner. This chapter further suggests the need of multifaceted and interdisciplinary research into ecologically based weed management, as DSR seems inevitable in the near future.
Resumo:
Dry-seeded rice (DSR) is an emerging resource-conserving technology in many Asian countries, but weeds remain the major threat to the production of DSR systems. A field study was conducted in 2012 and 2013 at the International Rice Research Institute (IRRI), Los Baños, Philippines, to evaluate the performance of sole and sequential applications of preemergence (oxadiazon and pendimethalin), early postemergence (butachlor + propanil and thiobencarb + 2,4-D), and late postemergence herbicides (bispyribac-sodium and fenoxaprop + ethoxysulfuron) with different modes of action in comparison to manual weeding in DSR. The sequential applications of all preemergence and postemergence herbicides reduced weed density and biomass by 80–100% compared to the nontreated plots. The sole application of postemergence herbicides reduced weed density by only 44–54% and weed biomass by 51–61%, whereas oxadiazon alone reduced weed density and biomass by 96–100%. All herbicide treatments and manual weeding significantly affected tiller number, biomass, crop growth rate, agronomic indices, yield-contributing parameters (panicle density and filled grains), and yield (biological and grain) of rice. The highest grain yield was obtained in the manually weeded plots (5.9–6.1 t ha−1) and the plots treated with oxadiazon alone (5.4–5.6 t ha−1) and oxadiazon followed by postemergence herbicides (5.2–5.8 t ha−1). The lowest paddy yield (0.22 t ha−1) was achieved in the nontreated plots followed by the plots treated with the sole application of bispyribac-sodium and fenoxaprop + ethoxysulfuron. The results suggest that oxadiazon is the best broad-spectrum and economically effective herbicide when applied alone or in combination with other effective postemergence herbicides with different modes of action, depending on the weed species present in the field.
Resumo:
A field study was established to evaluate oxadiargyl and pendimethalin during the wet seasons in Bangladesh in 2012 and 2013. The study evaluated the following treatments: oxadiargyl applied at 80, 120, and 160 g ai ha−1; pendimethalin at 800, 1200, and 1600 g ai ha−1; partial weedy; and weed-free. Rice plant density was greatly affected by weed control treatment. Lower density and lower uniformity of the rice plant stand occurred as a result of increased rates of herbicides. Increased rates of pendimethalin were more toxic than increased rates of oxadiargyl. Both herbicides effectively controlled Digitaria ciliaris, Echinochloa colona, and Phyllanthus niruri; however, they were unable to control Murdannia nudiflora. Oxadiargyl controlled Cyperus rotundus across rates by 31–55%, but pendimethalin was completely ineffective on it, and higher rates of both herbicides had no effect in controlling this weed. Both herbicides at higher rates reduced total weed biomass significantly. Among herbicide treatments, the highest yield (3.7–4.0 t ha−1) was recorded in plots treated with oxadiargyl at 160 g ai ha−1 and the lowest yield (2.4–2.8 t ha−1) was in plots treated with pendimethalin at 1600 g ai ha−1. Results from our study suggest that a higher rate of oxadiargyl can increase yield by suppressing weeds in dry-seeded rice systems. Similar to the results of oxadiargyl, pendimethalin at higher rates also greatly suppressed weeds; however, yield decreased due to phytotoxicity to rice seedlings.
Resumo:
Dry direct-seeded rice (DSR) faces with complex weed problems particularly when farmers missed pre-emergence herbicide applications. Thus, an effective and strategic weed control in DSR is often required with available options of post-emergence herbicides. In such situations, tank mixtures of herbicides may provide broad spectrum weed control in DSR. Field experiments were conducted in the wet seasons of 2013 and 2014 to study weed control in response to tank mixtures of herbicides currently applied in DSR in South Asia. Results revealed that the tank mixtures of the currently available herbicides (azimsulfuron plus bispyribac or fenoxaprop, bispyribac plus fenoxaprop, and azimsulfuron plus bispyribac plus fenoxaprop; all applied as post-emergence) rarely resulted in antagonistic effects. Highest weed control efficiency (∼98%) was recorded with the tank mixture of azimsulfuron plus bispyribac plus fenoxaprop during both the years. This treatment also produced highest grain yield (7.2 t ha−1 in 2013 and 7.9 t ha−1in 2014), which was similar to the grain yield in the plots treated with the tank mix of azimsulfuron plus fenoxaprop, pendimethalin (applied as pre-emergence) followed by (fb) bispyribac, pendimethalin fb fenoxaprop, as well as pendimethalin fb azimsulfuron. Plots treated with the post-emergence application of single herbicide (i.e., azimsulfuron, bispyribac, or fenoxaprop) had lower grain yield (3.0–5.2 t ha−1 in 2013 to 3.5–6.1 t ha−1in 2014) than all the sequential herbicide treatments and tank mixtures (azimsulfuron plus fenoxaprop and azimsulfuron plus bispyribac), owing to a broad spectrum weed control. The study suggested that if farmers missed the pre-emergence application of herbicides (e.g., pendimethalin) due to erratic rains or due to other reasons, good weed control and high yield can still be obtained with tank mix applications of azimsulfuron plus fenoxaprop or azimsulfuron plus bispyribac plus fenoxaprop in DSR.
Resumo:
Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).