611 resultados para Rheology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major challenge for producing low cost biosensors based on nanostructured films with control of molecular architectures is to preserve the catalytic activity of the immobilized biomolecules. In this study, we show that catalase (HRP) keeps its activity if immobilized in Langmuir-Blodgett (LB) films of dipalmitoyl phosphatidylglycerol (DPPG). The incorporation of catalase into a DPPG monolayer at the at interface was demonstrated with surface pressure and surface potential isotherms, in addition to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). According to the PM-IRRAS data. catalase was not denatured upon adsorption on a preformed DPPG monolayer and could be transferred onto a solid substrate. The catalytic activity of catalase in a mixed LB film with DPPG was ca. 13% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allows catalase-containing LB films to be used in sensing hydrogen peroxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defatted rumen protein and soy protein concentrate were extruded in a 15.5:1 L/D single-screw extruder at the optimum conditions for their expansion (150A degrees C and 35% moisture, and 130A degrees C and 35% moisture, respectively). Emulsions were produced with these proteins and studied by rheology and time domain low-resolution (1)H nuclear magnetic resonance (TD-NMR). Extrusion increased storage modulus of rumen protein emulsions. The opposite was observed for soy protein. Mechanical relaxation showed the existence of three relaxing components in the emulsions whose relative contributions were changed by extrusion. Likewise, spin-spin relaxation time constants (T (2)) measured by TD-NMR also showed three major distinct populations of protons in respect to their mobility that were also altered by extrusion. Extrusion increased surface hydrophobicity of both rumen and soy protein. Solubility of rumen protein increased with extrusion whereas soy protein had its solubility decreased after processing. Extrusion promoted molecular reorganization of protein, increasing its superficial hydrophobicity, affecting its interfacial properties and improving its emulsifying behavior. The results show that extrusion can promote the use of rumen, a by-product waste from the meat industry, in human nutrition by replacing soy protein in food emulsions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Studies of the viscoelastic properties of the vocal folds are normally performed with rheometers that use parallel assigned a fixed value. In tissues subject to variation of thickness plates whose interplate space is usually at between samples, fixed gaps could result in different compressions, compromising the comparison among them. We performed,in experimental study to determine whether different compressions call lead to different results in measurements of dynamic viscosity (DV) of vocal fold samples. Methods: We Measured the DV of vocal fold samples of 10 larynges of cadavers under 3 different compression levels, corresponding to 0.2, 0.5, and 10 N on an 8-mm-diameter parallel-plate rheometer. Results: The DV directly varied with compression. We observed statistically significant differences between the results of 0.2 and 10 N (p = 0.0396) and 0.5 and 10 N (p = 0.0442). Conclusions: The study demonstrated that the level of compression influences the DV measure and Suggests that a defined compression level should be used in rheometric studies of biological tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the effect of storage time on culture viability and some rheological properties (yield stress, storage modulus, loss modulus, linear viscoelastic region, structural recuperation and firmness) of fermented milk made with Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus (LA) and Bifidobacterium animalis ssp. lactis in coculture with Streptococcus thermophilus (ST). Acidification profiles and factors that affect viability (postfermentation acidification, acidity and dissolved oxygen) were also studied during 35 days at 4C. Fermented milk prepared with a coculture of ST and Bifidobacterium lactis gave the most constant rheological behavior and the best cell viability during cold storage; it was superior to ST plus LA for probiotic fermented milk production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to optimize the rheological properties of probiotic yoghurts supplemented with skimmed milk powder (SMP) whey protein concentrate (WPC) and sodium caseinate (Na-Cn) by using an experimental design type simplex-centroid for mixture modeling It Included seven batches/trials three were supplemented with each type of the dairy protein used three corresponding to the binary mixtures and one to the ternary one in order to increase protein concentration in 1 g 100 g(-1) of final product A control experiment was prepared without supplementing the milk base Processed milk bases were fermented at 42 C until pH 4 5 by using a starter culture blend that consisted of Streptococcus thermophilus Lactobacillus delbrueckii subsp bulgaricus and Bifidobacterium (Humans subsp lactis The kinetics of acidification was followed during the fermentation period as well the physico-chemical analyses enumeration of viable bacteria and theological characteristics of the yoghurts Models were adjusted to the results (kinetic responses counts of viable bacteria and theological parameters) through three regression models (linear quadratic and cubic special) applied to mixtures The results showed that the addition of milk proteins affected slightly acidification profile and counts of S thermophilus and B animal`s subsp lactis but it was significant for L delbrueckii subsp bulgaricus Partially-replacing SMP (45 g/100 g) with WPC or Na-Cn simultaneously enhanced the theological properties of probiotic yoghurts taking into account the kinetics of acidification and enumeration of viable bacteria (C) 2010 Elsevier Ltd All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan/starchblends represent an interesting alternative for the preparation of biocompatible drug delivery systems, packing materials and edible films. This paper reports on the effects of starch gelatinization and oxidation on the rheological behavior of chitosan/starch blends. The results show that the modifications in the starch structure cause changes in G` (storage modulus) and G `` (lossmodulus) as a function of frequency. For chitosan/starch, G `` is higher than G`, showing a viscous behavior. However, for chitosan/gelatinized starch and chitosan/oxidized starch, an increase in the angular frequency promotes a modulus crossover at omega = 0.02 and 0.04 rad s(-1), respectively. The viscosity curves as a function of shear rate show that both modifications cause an increase in viscosity, and all blends show a non-Newtonian behavior. (C) 2011 Society of Chemical Industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the age of multi-media, portable electronic devices such as mobile phones, personal digital assistant and handheld gaming systems have increased the demand for high performance displays with low cost production. Inkjet printing color optical filters (COF) for LCD applications seem to be an interesting alternative to decrease the production costs. The advantage of inkjet printing technology is to be fast, accurate, easy to run and cheaper than other technologies. In this master thesis work, we used various disciplines such as optical microscopy, rheology, inkjet printing, profilometering and colorimetry. The specific aim of the thesis was to investigate the feasibility of using company-A pigment formulation in inkjet production of COF for active matrix LCD applications. Ideal viscosity parameters were determined from 10 to 20mPa·s for easy inkjet printing at room temperature. The red pigments used are fully dispersed into the solvent and present an excellent homogenous repartition after printing. Thickness investigations revealed that the printed COF were equal or slightly thicker than typically manufactured ones. The colorimetry investigations demonstrated color coordinates very close to the NTSC red standard. LED backlighting seems to be a valuable solution to combine with the printed COF regarding to the spectrum and color analysis. The results on this thesis will increase the understanding of inkjet printing company-A pigments to produce COF for LCD applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drying process of linseed oil, oxidized at 80 oC, has been investigated with rheology measurements, Fourier transformation infrared spectroscopy (FTIR), and time of flight secondary ion mass spectrometry (ToF-SIMS). The drying process can be divided into three main steps: initiation, propagation and termination. ToF-SIMS spectra show that the oxidation is initiated at the linolenic (three double bonds) and linoleic fatty acids (two double bonds). ToF-SIMS spectra reveal peaks that can be assigned to ketones, alcohols and hydroperoxides. In this article it is shown that FTIR in combination with ToF-SIMS are well suited tools for investigations of various fatty acid components and reaction products of linseed oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A formação de emulsão de água-em-óleo gera um significativo incremento na viscosidade, o que afeta diretamente a produção do poço, pois aumenta a perda de carga ao longo da linha de produção, dificultando o escoamento e diminuindo a produção de óleo. A presença e natureza da emulsão, e seu impacto na reologia do petróleo, podem determinar a viabilidade econômica e técnica dos processos envolvidos. A medida que a fração de água aumenta e a temperatura é reduzida, o comportamento das emulsões se torna cada vez mais não-Newtoniano. A decorrência disso, é que a temperatura e a taxa de cisalhamento passam a ter maior impacto na variação da viscosidade das emulsões. Nesse estudo são propostos novos métodos que levam em conta essas variáveis. Os dados reológicos experimentais de 15 petróleos leves foram utilizados para avaliar o desempenho dos modelos existentes na literatura e compará-los com os novos métodos propostos nesse estudo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil well cementing materials consist of slurries of Special class Portland cement dispersed in water. Admixtures can be used to provide the necessary fluidity, so the material can be efficiently pumped down as well as penetrate porous rocks with controlled filter loss. Construction admixtures can be used to modify the properties of oil well cements provided they can withstand and hold their properties at the higher than ambient temperatures usually encountered in oil fields. In civil construction, superplasticizer play the role of dispersants that reduce the facto r of water cement improve mechanical properties and fluidity of the cement, whereas anti-segregation agents improve the workability of the slurry. In the present study, oil well cement slurries were produced adding both a dispersant and an anti-segregation agent conventionally used in Portland CPII-Z-32 RS cement aiming at materials for primary cementing and squeeze operations. Three basic aspects were evaluated: fluidity, filter loss and the synergetic effect of the admixtures at two temperatures, i.e., 27°C and 56°C, following API RP 10B practical recommendations. The slurries were prepared using admixture concentrations varying from 2.60 Kgf/m3 (0.02 gallft3) to 5.82 Kgf/m3 (0.045 galJft3) BWOC. The density of the slurries was set to 1.89 g/cm3 (15.8 Ib/gal). 0.30 to 0.60% BWOC of a CMC-based anti-segregation agent was added to the cement to control the filter loss. The results showed that the addition of anti-segregation at concentrations above 0.55% by weight of cement resulted in the increased viscosity of the folders in temperatures evaluated. The increasing the temperature of the tests led to a reduction in the performance of anti-segregation. At concentrations of 5.20 kgf/m3 (0,040 gallft3) and 5.82 Kgf/m3 (0,045 gal/ft 3) observed a better performance of the properties evaluated in the proposed system. At low temperature was observed instability in the readings of rheology for all concentrations of anti-segregation. Contents that increasing the concentration of anti¬-segregation is limited concentrations greater than 0.55 % BWOC of the CMC in temperature analyzed. The use of the system with CMC promoted a good performance against the properties evaluated. The principal function of anti¬-segregation was optimized with increasing concentration of superplasticizer, at temperatures above the 2rC. The study of the behaviour of systemic additives, resulting in slurries of cement, which can be optimized face studies of other intrinsic properties in oil fields

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The northeastern region of Brazil has a large number of wells producing oil using a method of secondary recovery steam injection, since the oil produced in this region is essentially viscous. This recovery method puts the cement / coating on thermal cycling, due to the difference in coefficient of thermal expansion between cement and metal coating causes the appearance of cracks at this interface, allowing the passage of the annular fluid, which is associated with serious risk socioeconomic and environmental. In view of these cracks, a correction operation is required, resulting in more costs and temporary halt of production of the well. Alternatively, the oil industry has developed technology for adding new materials in cement pastes, oil well, providing high ductility and low density in order to withstand the thermo-mechanical loads generated by the injection of water vapor. In this context, vermiculite, a clay mineral found in abundance in Brazil has been applied in its expanded form in the construction industry for the manufacture of lightweight concrete with excellent insulation and noise due to its high melting point and the presence of air in their layers lamellar. Therefore, the vermiculite is used for the purpose of providing low-density cement paste and withstand high temperatures caused by steam injection. Thus, the present study compared the default folder containing cement and water with the folders with 6%, 8% and 10% vermiculite micron conducting tests of free water, rheology and compressive strength where it obtained the concentration of 8 % with the best results. Subsequently, the selected concentration, was compared with the results recommended by the API standard tests of filtered and stability. And finally, analyzed the results from tests of specific gravity and time of thickening. Before the study we were able to make a folder with a low density that can be used in cementing oil well in order to withstand the thermo-mechanical loads generated by steam injection

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed