977 resultados para Reuschlen, C. G
Resumo:
Background: In recent years, an increasing number of auto-antibodies (AB) have been detected in the CSF and serum of patients with new onset epilepsy. Some of these patients develop convulsive or nonconvulsive status epilepticus (AB-SE), necessitating intensive medical care and administration of multiple antiepileptic and immunomodulatory treatments of uncertain effectiveness. Objectives: In this retrospective multicenter survey we aimed to determine the spectrum of gravity, the duration and the prognosis of the disorder. In addition, we sought to identify the antibodies associated with this condition, as well as determine whether there is a most effective treatment regime. Methods: 12 European Neurology University Clinics, with extensive experience in the treatment of SE patients, were sent a detailed questionnaire regarding symptoms and treatment of AB-SE patients. Seven centers responded positively, providing a total of 13 patients above the age of 16. Results: AB-SE affects mainly women (12/13, 92%) with a variable age at onset (17-69 years, median: 25 years). The duration of the disease is also variable (10 days to 12 years, median: 2 months). Only the 3 oldest patients died (55-69 years). Most patients were diagnosed with anti NMDAR encephalitis (8/13) and had oligoclonal bands in the CSF (9/13). No specific treatment regimen (antiepileptic, immunomodulatory) was found to be clearly superior. Most of the surviving 10 patients (77%) recovered completely or nearly so within 2 years of index poststatus. Conclusion: AB-SE is a severe but potentially reversible condition. Long duration does not seem to imply fatal outcome; however, age older than 50 years at time of onset appears to be a risk factor for death. There was no evidence for an optimal antiepileptic or immunomodulatory treatment. A prospective multicenter study is warranted in order to stratify the optimal treatment algorithm, determine clear risk factors of unfavorable outcome and long-term prognosis.
Resumo:
Forensic scientists working in 12 state or private laboratories participated in collaborative tests to improve the reliability of the presentation of DNA data at trial. These tests were motivated in response to the growing criticism of the power of DNA evidence. The experts' conclusions in the tests are presented and discussed in the context of the Bayesian approach to interpretation. The use of a Bayesian approach and subjective probabilities in trace evaluation permits, in an easy and intuitive manner, the integration into the decision procedure of any revision of the measure of uncertainty in the light of new information. Such an integration is especially useful with forensic evidence. Furthermore, we believe that this probabilistic model is a useful tool (a) to assist scientists in the assessment of the value of scientific evidence, (b) to help jurists in the interpretation of judicial facts and (c) to clarify the respective roles of scientists and of members of the court. Respondents to the survey were reluctant to apply this methodology in the assessment of DNA evidence.
Resumo:
La finalidad del trabajo es demostrar que los objetivos que Grotowski pretendió en su trabajo con los actores en su primera época, ligada al teatro laboratorium, pueden ser contemplados desde el mapa conceptual de la psicología profunda o analítica creada por C.G. Jung. Este acercamiento, permite reimaginar este “proceso de autopenetración” que el creador polaco buscaba con sus actores desde esta visión psicológica concreta. Cabe afirmar, por tanto, que este trabajo actoral iba más allá de la dimensión escnica y era un método “terapéutico” de desarrollo de la personalidad del individuo-actor en su camino de transformación para llegar a ser lo que Grotowski denominó “actor santo”.
Resumo:
Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.
Resumo:
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
Resumo:
The paper follows on from earlier work [Taroni F and Aitken CGG. Probabilistic reasoning in the law, Part 1: assessment of probabilities and explanation of the value of DNA evidence. Science & Justice 1998; 38: 165-177]. Different explanations of the value of DNA evidence were presented to students from two schools of forensic science and to members of fifteen laboratories all around the world. The responses were divided into two groups; those which came from a school or laboratory identified as Bayesian and those which came from a school or laboratory identified as non-Bayesian. The paper analyses these responses using a likelihood approach. This approach is more consistent with a Bayesian analysis than one based on a frequentist approach, as was reported by Taroni F and Aitken CGG. [Probabilistic reasoning in the law, Part 1: assessment of probabilities and explanation of the value of DNA evidence] in Science & Justice 1998.
Resumo:
The Bacillus subtilis thermosensitive mutant ts-21 bears two C-G-->T-A transitions in the mnaA gene. At the nonpermissive temperature it is characterized by coccoid cell morphology and reduced cell wall phosphate content. MnaA converts UDP-N-acetylglucosamine into UDP-N-acetylmannosamine, a precursor of the teichoic acid linkage unit.
Resumo:
We define equivariant semiprojectivity for C* -algebras equipped with actions of compact groups. We prove that the following examples are equivariantly semiprojective: A. Arbitrary finite dimensional C*-algebras with arbitrary actions of compact groups. - B. The Cuntz algebras Od and extended Cuntz algebras Ed, for finite d, with quasifree actions of compact groups. - C. The Cuntz algebra O∞ with any quasifree action of a finite group. For actions of finite groups, we prove that equivariant semiprojectivity is equiv- alent to a form of equivariant stability of generators and relations. We also prove that if G is finite, then C*(G) is graded semiprojective.
Resumo:
Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic diet.
Resumo:
The 1st International Symposium on Ostracoda (ISO) was held in Naples (1963). The philosophy behind this symposium and the logical outcome of what is now known as the International Research Group on Ostracoda (IRGO) is here reviewed, namely ostracodology over the last 50 years is sociologically analysed. Three different and important historic moments for the scientific achievements of this domain are recognised. The first one, between about 1963-1983, is related to applied research for the oil industry as well as to the great interest in the better description of the marine environment by both zoologists and palaeontologists. Another important aspect during this period was the work by researchers dealing with Palaeozoic ostracods, who had their own discussion group, IRGPO. Gradually, the merger of this latter group with those dealing with post-Palaeozoic ostracods at various meetings improved communication between the two groups of specialists. A second period was approximately delineated between 1983 and 2003. During this time-slice, more emphasis was addressed to environmental research with topics such as the study of global events and long-term climate change. Ostracodologists profited also from the research "politics" within national and international programmes. Large international research teams emerged using new research methods. During the third period (2003-2013), communication and collaborative research reached a global dimension. Amongst the topics of research we cite the reconstruction of palaeoclimate using transfer functions, the building of large datasets of ostracod distributions for regional and intercontinental studies, and the implementation of actions that should lead to taxonomic harmonisation. Projects within which molecular biological techniques are routinely used, combined with sophisticated morphological information, expanded now in their importance. The documentation of the ostracod description improved through new techniques to visualise morphological details, which stimulated also communication between ostracodologists. Efforts of making available ostracod information through newsletters and electronic media are evoked.
Resumo:
Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.
Resumo:
The antennal lobe is the primary olfactory center in the insect brain and represents the anatomical and functional equivalent of the vertebrate olfactory bulb. Olfactory information in the external world is transmitted to the antennal lobe by olfactory sensory neurons (OSNs), which segregate to distinct regions of neuropil called glomeruli according to the specific olfactory receptor they express. Here, OSN axons synapse with both local interneurons (LNs), whose processes can innervate many different glomeruli, and projection neurons (PNs), which convey olfactory information to higher olfactory brain regions. Optical imaging of the activity of OSNs, LNs and PNs in the antennal lobe - traditionally using synthetic calcium indicators (e.g. calcium green, FURA-2) or voltage-sensitive dyes (e.g. RH414) - has long been an important technique to understand how olfactory stimuli are represented as spatial and temporal patterns of glomerular activity in many species of insects. Development of genetically-encoded neural activity reporters, such as the fluorescent calcium indicators G-CaMP and Cameleon, the bioluminescent calcium indicator GFP-aequorin, or a reporter of synaptic transmission, synapto-pHluorin has made the olfactory system of the fruitfly, Drosophila melanogaster, particularly accessible to neurophysiological imaging, complementing its comprehensively-described molecular, electrophysiological and neuroanatomical properties. These reporters can be selectively expressed via binary transcriptional control systems (e.g. GAL4/UAS, LexA/LexAop, Q system) in defined populations of neurons within the olfactory circuitry to dissect with high spatial and temporal resolution how odor-evoked neural activity is represented, modulated and transformed. Here we describe the preparation and analysis methods to measure odor-evoked responses in the Drosophila antennal lobe using G-CaMP. The animal preparation is minimally invasive and can be adapted to imaging using wide-field fluorescence, confocal and two-photon microscopes.
Resumo:
ABSTRACT: The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms.In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
Resumo:
Lettre autographe signée. - Date restituée d'après le contexte : "je suis en train de monter un grand concert spirituel le samedi saint (23)" , ce qui autorise l'année 1859, où Berlioz dirige "L'Enfance du Christ" à l'Opéra-Comique le 23 avril. - A rapprocher d'une lettre à Camille Pal, où Berlioz s'exprime dans ses termes à peu près identiques (C.G. n° 2364). - Lors du concert à Baden le 29 août 1859, Berlioz dirigea des extraits des "Troyens" et non "Roméo et Juliette"
Resumo:
Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many combinations of analytical methods. The teams generated predictive models without knowing the biological meaning of some of the endpoints and, to mimic clinical reality, tested the models on data that had not been used for training. We found that model performance depended largely on the endpoint and team proficiency and that different approaches generated models of similar performance. The conclusions and recommendations from MAQC-II should be useful for regulatory agencies, study committees and independent investigators that evaluate methods for global gene expression analysis.