934 resultados para Restricted maximum likelihood
Resumo:
Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops.
Error, Bias, and Long-Branch Attraction in Data for Two Chloroplast Photosystem Genes in Seed Plants
Resumo:
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady
Resumo:
Extended spectrum β-lactamases or ESBLs, which are derived from non-ESBL precursors by point mutation of β-lactamase genes (bla), are spreading rapidly all over the world and have caused considerable problems in the treatment of infections caused by bacteria which harbour them. The mechanism of this resistance is not fully understood and a better understanding of these mechanisms might significantly impact on choosing proper diagnostic and treatment strategies. Previous work on SHV β-lactamase gene, blaSHV, has shown that only Klebsiella pneumoniae strains which contain plasmid-borne blaSHV are able to mutate to phenotypically ESBL-positive strains and there was also evidence of an increase in blaSHV copy number. Therefore, it was hypothesised that although specific point mutation is essential for acquisition of ESBL activity, it is not yet enough, and blaSHV copy number amplification is also essential for an ESBL-positive phenotype, with homologous recombination being the likely mechanism of blaSHV copy number expansion. In this study, we investigated the mutation rate of non-ESBL expressing K. pneumoniae isolates to an ESBL-positive status by using the MSS-maximum likelihood method. Our data showed that blaSHV mutation rate of a non-ESBL expressing isolate is lower than the mutation rate of the other single base changes on the chromosome, even with a plasmid-borne blaSHV gene. On the other hand, mutation rate from a low MIC ESBL-positive (≤ 8 µg/mL for cefotaxime) to high MIC ESBL-positive (≥16 µg/mL for cefotaxime) is very high. This is because only gene copy number increase is needed which is probably mediated by homologous recombination that typically takes place at a much higher frequencies than point mutations. Using a subinhibitory concentration of novobiocin, as a homologous recombination inhibitor, revealed that this is the case.
Resumo:
This article describes the theoretical underpinning and development of a measurement instrument that provides teachers with a tool to observe the personal creativity characteristics of individual students. The instrument was developed by compiling a list of characteristics derived from the literature to be indicative of the personal characteristics of creative people. The list was then reduced by grouping like characteristics to 9 cognitive and dispositional traits that were considered appropriate for elementary students. The 9-item instrument was then administered in 24 classrooms to 520 Year 6 and Year 7 students. Factor analysis using maximum likelihood extraction with an oblimin rotation revealed a single factor with an eigenvalue greater than 1 and accounting for 63% of the variance. All 9 items on this factor loaded at .72 or greater. The results indicated that the Creativity Checklist has very high internal consistency and is a reliable measurement instrument (a = .93).
Resumo:
Multivariate methods are required to assess the interrelationships among multiple, concurrent symptoms. We examined the conceptual and contextual appropriateness of commonly used multivariate methods for cancer symptom cluster identification. From 178 publications identified in an online database search of Medline, CINAHL, and PsycINFO, limited to articles published in English, 10 years prior to March 2007, 13 cross-sectional studies met the inclusion criteria. Conceptually, common factor analysis (FA) and hierarchical cluster analysis (HCA) are appropriate for symptom cluster identification, not principal component analysis. As a basis for new directions in symptom management, FA methods are more appropriate than HCA. Principal axis factoring or maximum likelihood factoring, the scree plot, oblique rotation, and clinical interpretation are recommended approaches to symptom cluster identification.
Resumo:
Perez-Losada et al. [1] analyzed 72 complete genomes corresponding to nine mammalian (67 strains) and 2 avian (5 strains) polyomavirus species using maximum likelihood and Bayesian methods of phylogenetic inference. Because some data of 2 genomes in their work are now not available in GenBank, in this work, we analyze the phylogenetic relationship of the remaining 70 complete genomes corresponding to nine mammalian (65 strains) and two avian (5 strains) polyomavirus species using a dynamical language model approach developed by our group (Yu et al., [26]). This distance method does not require sequence alignment for deriving species phylogeny based on overall similarities of the complete genomes. Our best tree separates the bird polyomaviruses (avian polyomaviruses and goose hemorrhagic polymaviruses) from the mammalian polyomaviruses, which supports the idea of splitting the genus into two subgenera. Such a split is consistent with the different viral life strategies of each group. In the mammalian polyomavirus subgenera, mouse polyomaviruses (MPV), simian viruses 40 (SV40), BK viruses (BKV) and JC viruses (JCV) are grouped as different branches as expected. The topology of our best tree is quite similar to that of the tree constructed by Perez-Losada et al.
Resumo:
Crash prediction models are used for a variety of purposes including forecasting the expected future performance of various transportation system segments with similar traits. The influence of intersection features on safety have been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes compared to other segments in the transportation system. The effects of left-turn lanes at intersections in particular have seen mixed results in the literature. Some researchers have found that left-turn lanes are beneficial to safety while others have reported detrimental effects on safety. This inconsistency is not surprising given that the installation of left-turn lanes is often endogenous, that is, influenced by crash counts and/or traffic volumes. Endogeneity creates problems in econometric and statistical models and is likely to account for the inconsistencies reported in the literature. This paper reports on a limited-information maximum likelihood (LIML) estimation approach to compensate for endogeneity between left-turn lane presence and angle crashes. The effects of endogeneity are mitigated using the approach, revealing the unbiased effect of left-turn lanes on crash frequency for a dataset of Georgia intersections. The research shows that without accounting for endogeneity, left-turn lanes ‘appear’ to contribute to crashes; however, when endogeneity is accounted for in the model, left-turn lanes reduce angle crash frequencies as expected by engineering judgment. Other endogenous variables may lurk in crash models as well, suggesting that the method may be used to correct simultaneity problems with other variables and in other transportation modeling contexts.
Resumo:
A good object representation or object descriptor is one of the key issues in object based image analysis. To effectively fuse color and texture as a unified descriptor at object level, this paper presents a novel method for feature fusion. Color histogram and the uniform local binary patterns are extracted from arbitrary-shaped image-objects, and kernel principal component analysis (kernel PCA) is employed to find nonlinear relationships of the extracted color and texture features. The maximum likelihood approach is used to estimate the intrinsic dimensionality, which is then used as a criterion for automatic selection of optimal feature set from the fused feature. The proposed method is evaluated using SVM as the benchmark classifier and is applied to object-based vegetation species classification using high spatial resolution aerial imagery. Experimental results demonstrate that great improvement can be achieved by using proposed feature fusion method.
Resumo:
The traditional searching method for model-order selection in linear regression is a nested full-parameters-set searching procedure over the desired orders, which we call full-model order selection. On the other hand, a method for model-selection searches for the best sub-model within each order. In this paper, we propose using the model-selection searching method for model-order selection, which we call partial-model order selection. We show by simulations that the proposed searching method gives better accuracies than the traditional one, especially for low signal-to-noise ratios over a wide range of model-order selection criteria (both information theoretic based and bootstrap-based). Also, we show that for some models the performance of the bootstrap-based criterion improves significantly by using the proposed partial-model selection searching method. Index Terms— Model order estimation, model selection, information theoretic criteria, bootstrap 1. INTRODUCTION Several model-order selection criteria can be applied to find the optimal order. Some of the more commonly used information theoretic-based procedures include Akaike’s information criterion (AIC) [1], corrected Akaike (AICc) [2], minimum description length (MDL) [3], normalized maximum likelihood (NML) [4], Hannan-Quinn criterion (HQC) [5], conditional model-order estimation (CME) [6], and the efficient detection criterion (EDC) [7]. From a practical point of view, it is difficult to decide which model order selection criterion to use. Many of them perform reasonably well when the signal-to-noise ratio (SNR) is high. The discrepancies in their performance, however, become more evident when the SNR is low. In those situations, the performance of the given technique is not only determined by the model structure (say a polynomial trend versus a Fourier series) but, more importantly, by the relative values of the parameters within the model. This makes the comparison between the model-order selection algorithms difficult as within the same model with a given order one could find an example for which one of the methods performs favourably well or fails [6, 8]. Our aim is to improve the performance of the model order selection criteria in cases where the SNR is low by considering a model-selection searching procedure that takes into account not only the full-model order search but also a partial model order search within the given model order. Understandably, the improvement in the performance of the model order estimation is at the expense of additional computational complexity.
Resumo:
The DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels. Alignment of the three genome sequences with those of three published RTBV sequences (Phi-1, Phi-2 and Phi-3) revealed numerous nucleotide substitutions and some insertions and deletions. The published RTBV sequences originated from the same greenhouse isolate at IRRI 20, 11 and 9 years ago. All open reading frames (ORFs) and known functional domains were conserved across the six variants. The cysteine-rich region of ORF3 showed the greatest variation. When the six DNA sequences from IRRI were compared with that of an isolate from Malaysia (Serdang), similar changes were observed in the cysteine-rich region in addition to other nucleotide substitutions and deletions across the genome. The aligned nucleotide sequences of the IRRI variants and Serdang were used to analyse phylogenetic relationships by the bootstrapped parsimony, distance and maximum-likelihood methods. The isolates clustered in three groups: Serdang alone; Ic and G1; and Phi-1, Phi-2, Phi-3 and G2. The distribution of phylogenetically informative residues in the IRRI sequences shared with the Serdang sequence and the differing tree topologies for segments of the genome suggested that recombination, as well as substitutions and insertions or deletions, has played a role in the evolution of RTBV variants. The significance and implications of these evolutionary forces are discussed in comparison with badnaviruses and caulimoviruses.