949 resultados para Reduct and Core
Resumo:
The emerging use of real-time 3D-based multimedia applications imposes strict quality of service (QoS) requirements on both access and core networks. These requirements and their impact to provide end-to-end 3D videoconferencing services have been studied within the Spanish-funded VISION project, where different scenarios were implemented showing an agile stereoscopic video call that might be offered to the general public in the near future. In view of the requirements, we designed an integrated access and core converged network architecture which provides the requested QoS to end-to-end IP sessions. Novel functional blocks are proposed to control core optical networks, the functionality of the standard ones is redefined, and the signaling improved to better meet the requirements of future multimedia services. An experimental test-bed to assess the feasibility of the solution was also deployed. In such test-bed, set-up and release of end-to-end sessions meeting specific QoS requirements are shown and the impact of QoS degradation in terms of the user perceived quality degradation is quantified. In addition, scalability results show that the proposed signaling architecture is able to cope with large number of requests introducing almost negligible delay.
Resumo:
Oxygen 1s excitation and ionization processes in the CO2 molecule have been studied with dispersed and non-dispersed fluorescence spectroscopy as well as with the vacuum ultraviolet (VUV) photon?photoion coincidence technique. The intensity of the neutral O emission line at 845 nm shows particular sensitivity to core-to-Rydberg excitations and core?valence double excitations, while shape resonances are suppressed. In contrast, the partial fluorescence yield in the wavelength window 300?650 nm and the excitation functions of selected O+ and C+ emission lines in the wavelength range 400?500 nm display all of the absorption features. The relative intensity of ionic emission in the visible range increases towards higher photon energies, which is attributed to O 1s shake-off photoionization. VUV photon?photoion coincidence spectra reveal major contributions from the C+ and O+ ions and a minor contribution from C2+. No conclusive changes in the intensity ratios among the different ions are observed above the O 1s threshold. The line shape of the VUV?O+ coincidence peak in the mass spectrum carries some information on the initial core excitation
Resumo:
This paper examines the implications of strategic rigidness for technology adoption behaviours among electric utilities. Such behaviours lead to heterogeneity in firm performance and consequently affect the electric utility industry. The paper's central aim is to identify and describe the implications of strategic rigidness for a utility firm's decision making in adopting newer renewable energy technologies. The findings indicate that not all utility firms are keen to adopt these new technologies, as these firms have traditionally been operating efficiently with a more conventional and mature technological arrangement that has become embedded in the organisational routine. Case studies of Iberdrola S.A. and Enel S.p.A. as major electric utilities are detailed to document mergers and acquisitions and technology adoption decisions. The results indicate that technology adoption behaviours vary widely across utility firms with different organisational learning processes and core capabilities.
Resumo:
The goal of the W3C's Media Annotation Working Group (MAWG) is to promote interoperability between multimedia metadata formats on the Web. As experienced by everybody, audiovisual data is omnipresent on today's Web. However, different interaction interfaces and especially diverse metadata formats prevent unified search, access, and navigation. MAWG has addressed this issue by developing an interlingua ontology and an associated API. This article discusses the rationale and core concepts of the ontology and API for media resources. The specifications developed by MAWG enable interoperable contextualized and semantic annotation and search, independent of the source metadata format, and connecting multimedia data to the Linked Data cloud. Some demonstrators of such applications are also presented in this article.
Resumo:
Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure–high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior.
Resumo:
The upper 200 m of the sediments recovered during IODP Leg 302, the Arctic Coring Expedition (ACEX), to the Lomonosov Ridge in the central Arctic Ocean consist almost exclusively of detrital material. The scarcity of biostratigraphic markers severely complicates the establishment of a reliable chronostratigraphic framework for these sediments, which contain the first continuous record of the Neogene environmental and climatic evolution of the Arctic region. Here we present profiles of cosmogenic 10Be together with the seawater-derived fraction of stable 9Be obtained from the ACEX cores. The down-core decrease of 10Be/9Be provides an average sedimentation rate of 14.5 ± 1 m/Ma for the uppermost 151 m of the ACEX record and allows the establishment of a chronostratigraphy for the past 12.3 Ma. The age-corrected 10Be concentrations and 10Be/9Be ratios suggest the existence of an essentially continuous sea ice cover over the past 12.3 Ma.
Resumo:
We have analysed alkenones in 149 surface sediments from the eastern South Atlantic in order to establish a sediment-based calibration of the U37K' paleotemperature index. Our study covers the major tropical to subpolar production systems and sea-surface temperatures (SST's) between 0° and 27°C. In order to define the most suitable calibration for this region, the U37K' values were correlated to seasonal, annual, and production-weighted annual mean atlas temperatures and compared to previously published culture and core-top calibrations. The best linear correlation between U37K' and SST was obtained using annual mean SST from 0 to 10 m water depth (U37K' = 0.033 T + 0.069, r**2 = 0.981). Data scattering increased significantly using temperatures of waters deeper than 20 m, suggesting that U37K' reflects mixed-layer SST and that alkenone production at thermocline depths was not high enough to significantly bias the mixed-layer signal. Regressions based on both production-weighted and on actual annual mean atlas SST were virtually identical, indicating that regional variations in the seasonality of primary production have no discernible effect on the U37K' vs. SST relationship. Comparison with published core-top calibrations from other oceanic regions revealed a high degree of accordance. We, therefore, established a global core-top calibration using U37K' data from 370 sites between 60°S and 60°N in the Atlantic, Indian, and Pacific Oceans and annual mean atlas SST (0-29°C) from 0 m water depth. The resulting relationship (U37K' = 0.033 T + 0.044, r**2 = 958) is identical within error limits to the widely used E. huxleyi calibrations of and attesting their general applicability. The observation that core-top calibrations extending over various biogeographical coccolithophorid zones are strongly linear and in better accordance than culture calibrations suggests that U37K' is less species-dependent than is indicated by culture experiments. The results also suggest that variations in growth rate of algae and nutrient availability do not significantly affect the sedimentary record of U37K' in open ocean environments.
Resumo:
Understanding flow path connectivity within a geothermal reservoir is a critical component for efficiently producing sustained flow rates of hot fluids from the subsurface. I present a new approach for characterizing subsurface fracture connectivity that combines petrographic and cold cathodoluminescence (CL) microscopy with stable isotope analysis (δ18O and δ13C) and clumped isotope (Δ47) thermometry of fracture-filling calcite cements from a geothermal reservoir in northern Nevada. Calcite cement samples were derived from both drill cuttings and core samples taken at various depths from wells within the geothermal field. CL microscopy of some fracture filling cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements are related to fracture opening and fault slip. Variations in trace element composition indicated by the luminescence patterns reflect variations in the composition and source of fluids moving through the fractures as they opened episodically. Calcite δ13C and δ18O results also show significant variation among the sampled cements, reflecting multiple generations of fluids and fracture connectivity. Clumped isotope analyses performed on a subset of the cements analyzed for conventional δ18O and δ13C mostly show calcite growth temperatures around 150°C—above the current ambient rock temperature, which indicates a common temperature trend for the geothermal reservoir. However, calcite cements sampled along faults located within the well field showed both cold (18.7°C) and hot (226.1°C) temperatures. The anomalously cool temperature found along the fault, using estimates from clumped isotope thermometry, suggests a possible connection to surface waters for the geothermal source fluids for this system. This information may indicate that some of the faults within the well field are transporting meteoric water from the surface to be heated at depth, which then is circulated through a complex network of fractures and other faults.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Some researchers argue that the top team, rather than the CEO, is a better predictor of an organisation’s fate (Finkelstein & Hambrick, 1996; Knight et al., 1999). However, others suggest that the importance of the top management team (TMT) composition literature is exaggerated (West & Schwenk, 1996). This has stimulated a need for further research on TMTs. While the importance of TMT is well documented in the innovation literature, the organisational environment also plays a key role in determining organisational outcomes. Therefore, the inclusion of both TMT characteristics and organisational variables (climate and organisational learning) in this study provides a more holistic picture of innovation. The research methodologies employed includes (i) interviews with TMT members in 35 Irish software companies (ii) a survey completed by managerial respondents and core workers in these companies (iii) in-depth interviews with TMT members from five companies. Data were gathered in two phases, time 1 (1998-2000) and time 2 (2003). The TMT played an important part in fostering innovation. However, it was a group process, rather than team demography, that was most strongly associated with innovation. Task reflexivity was an important predictor of innovation time 1, time 2). Only one measure of TMT diversity was associated with innovation - tenure diversity -in time 2 only. Organisational context played an important role in determining innovation. This was positively associated with innovation - but with one dimension of organisational learning only. The ability to share information (access to information) was not associated with innovation but the motivation to share information was (perceiving the sharing of information to be valuable). Innovative climate was also associated with innovation. This study suggests that this will lead to innovative outcomes if employees perceive the organisation to support risk, experimentation and other innovative behaviours.
Resumo:
Employees maintain a personal view toward their work, which can be referred to as their work orientation. Some employees view their work as their life's purpose (i.e., calling work orientation) and they tend to be 1) prosocially motivated, 2) derive meaning from work, and 3) feel that their purpose is from beyond the self. The purpose of the current dissertation was to differentiate calling work orientation from other similar workplace constructs, to investigate the most common covariates of calling work orientation, and to empirically test two possible moderators of the relationship between calling work orientation and work-related outcomes of job satisfaction, job performance, and work engagement. Two independent samples were collected for the purpose of testing hypotheses: data were collected from 520 working students and from 520 non-student employees. Participants from the student sample were recruited at Florida International University, and participants from the employee sample were recruited via the Amazon Mechanical Turk website. Participants from the student sample answered demographic questions and responded to self-report measures of job satisfaction, job performance, work engagement, spirituality, meaningful work, prosocial motivation, and work orientation. The procedure was similar for the employee sample, but their survey also included measures of counterproductive work behaviors, organizational citizenship behaviors, conscientiousness, and numerical ability. Additionally, employees were asked whether they would be willing to have a direct supervisor, peer, co-worker, client, or subordinate rate their job performance. Hierarchical regression findings suggest calling work orientation was predictive of overall job performance above and beyond two common predictors of performance, conscientiousness and numerical ability. The results for the covariate analyses provided evidence that prosocial motivation, meaningful work, and spirituality do play a significant role in the development of an employees' work orientation. Perceived career opportunities moderated the relationship between calling work orientation and job performance for the employee sample. Core self-evaluations moderated the relationship between calling work orientation and job performance, and core self-evaluations moderated the relationship between calling work orientation and work engagement. Collectively, findings from the current study highlight the benefits of examining work orientation in the prediction of workplace outcomes.