927 resultados para Recognition and enforcement of foreign judicial and arbitral decisions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P < 0.01) after scallops were stimulated by LPS. PGN or beta-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant Cflec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind beta-glucan. Immunofluorescence assay with polyclonal antibody specific for Cflec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognition and classification. We distinguish between two types of similarity metrics: metrics computed in image-space (image metrics) and metrics computed in transformation-space (transformation metrics). Existing methods typically use image and the nearest view of the object. Example for such a measure is the Euclidean distance between feature points in the image and corresponding points in the nearest view. (Computing this measure is equivalent to solving the exterior orientation calibration problem.) In this paper we introduce a different type of metrics: transformation metrics. These metrics penalize for the deformatoins applied to the object to produce the observed image. We present a transformation metric that optimally penalizes for "affine deformations" under weak-perspective. A closed-form solution, together with the nearest view according to this metric, are derived. The metric is shown to be equivalent to the Euclidean image metric, in the sense that they bound each other from both above and below. For Euclidean image metric we offier a sub-optimal closed-form solution and an iterative scheme to compute the exact solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a representation of the dynamics of human walking action for the purpose of person identification and classification by gait appearance. Our gait representation is based on simple features such as moments extracted from video silhouettes of human walking motion. We claim that our gait dynamics representation is rich enough for the task of recognition and classification. The use of our feature representation is demonstrated in the task of person recognition from video sequences of orthogonal views of people walking. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times, and under varying lighting environments. In addition, preliminary results are shown on gender classification using our gait dynamics features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Timmis J Neal M J and Hunt J. Augmenting an artificial immune network using ordering, self-recognition and histo-compatibility operators. In Proceedings of IEEE international conference of systems, man and cybernetics, pages 3821-3826, San Diego, 1998. IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The What-and-Where filter forms part of a neural network architecture for spatial mapping, object recognition, and image understanding. The Where fllter responds to an image figure that has been separated from its background. It generates a spatial map whose cell activations simultaneously represent the position, orientation, ancl size of all tbe figures in a scene (where they are). This spatial map may he used to direct spatially localized attention to these image features. A multiscale array of oriented detectors, followed by competitve and interpolative interactions between position, orientation, and size scales, is used to define the Where filter. This analysis discloses several issues that need to be dealt with by a spatial mapping system that is based upon oriented filters, such as the role of cliff filters with and without normalization, the double peak problem of maximum orientation across size scale, and the different self-similar interpolation properties across orientation than across size scale. Several computationally efficient Where filters are proposed. The Where filter rnay be used for parallel transformation of multiple image figures into invariant representations that are insensitive to the figures' original position, orientation, and size. These invariant figural representations form part of a system devoted to attentive object learning and recognition (what it is). Unlike some alternative models where serial search for a target occurs, a What and Where representation can he used to rapidly search in parallel for a desired target in a scene. Such a representation can also be used to learn multidimensional representations of objects and their spatial relationships for purposes of image understanding. The What-and-Where filter is inspired by neurobiological data showing that a Where processing stream in the cerebral cortex is used for attentive spatial localization and orientation, whereas a What processing stream is used for attentive object learning and recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (deltaG(o)), which is the sum of enthalpic (deltaH(o)) and entropic (deltaS(o)) terms. These parameters are temperature dependent through the heat capacity change (deltaCp). The thermodynamic parameters deltaH(o) and deltaCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which characterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: This article provides a review of the contribution of Axel Honneth’s model of recognition for critical social work. While Honneth’s tripartite conceptualisation of optimal identity-formation is positively appraised, his analysis of the link between misrecognition, the experience of shame and eventual sense of moral outrage, is contested. Drawing on a range of sources, including the sociology of shame, Honneth’s ideas about the emotional antecedents of emancipatory action are revised to guide critical social work with misrecognised service users.

Findings: The intellectual background to Honneth’s recognition model, emanating from leading German philosophers, is described and its application to social work set out. Even so, Honneth’s model is found to be deficient in one primary regard: its assumption about the emotional antecedents to quests for withheld recognition is misapprehended. In particular, the argument in this article is that the ubiquitous emotion of shame, which Honneth argues flows from misrecognition, must be carefully addressed through the medium of relationship, otherwise it might lead to repressed shame and frustrated attempts at social struggle. To this end, a social work process is delineated for dealing with shame, following episodes of misrecognition.

Applications: Honneth’s model of recognition, along with revised ideas about how to recognise and manage shame, is incorporated into a conceptual framework for critical social work practice. With this renewed understanding of the impact of shame, following misrecognition, social workers should be better equipped conceptually to enable service users to take action for empowerment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present an improved model for line and edge detection in cortical area V1. This model is based on responses of simple and complex cells, and it is multi-scale with no free parameters. We illustrate the use of the multi-scale line/edge representation in different processes: visual reconstruction or brightness perception, automatic scale selection and object segregation. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only and final categorization on coarse plus fine scales. We also present a multi-scale object and face recognition model. Processing schemes are discussed in the framework of a complete cortical architecture. The fact that brightness perception and object recognition may be based on the same symbolic image representation is an indication that the entire (visual) cortex is involved in consciousness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Coronary heart disease (CHD) is one of the leading causes of death in both men and women worldwide. Despite the common misconception that CHD is a ‘man's disease’, it is now well accepted that women endure worse clinical outcomes than men following CHD-related events. A number of studies have explored whether or not gender differences exist in patients presenting with CHD, and specifically whether women delay seeking help for cardiac conditions. UK and overseas studies on help-seeking for emergency cardiac events are contradictory, yet suggest that women often delay help-seeking. In addition, no studies have looked at presumed cardiac symptoms outside an emergency situation. Given the lack of understanding in this area, an explorative qualitative study on the gender differences in help-seeking for a non-emergency cardiac events is needed. Methods and analysis: A purposive sample of 20–30 participants of different ethnic backgrounds and ages attending a rapid access chest pain clinic will be recruited to achieve saturation. Semistructured interviews focusing on help-seeking decision-making for apparent cardiac symptoms will be undertaken. Interview data will be analysed thematically using qualitative software (NVivo) to understand any similarities and differences between the way men and women construct help-seeking. Findings will also be used to inform the preliminary development of a cardiac help-seeking intentions questionnaire. Ethics and dissemination: Ethical approvals were sought and granted. Namely, the University of Westminster (sponsor) and St Georges NHS Trust REC, and the Trust Research and Development Office granted approval to host the study on the Queen Mary's Roehampton site. The study is low risk, with interviews being conducted on hospital premises during working hours. Investigators will disseminate findings via presentations and publications. Participants will receive a written summary of the key findings.