856 resultados para Realistic microstructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulence profile measurements made on the upper continental slope and shelf of the southeastern Weddell Sea reveal striking contrasts in dissipation and mixing rates between the two sites. The mean profiles of dissipation rates from the upper slope are 1-2 orders of magnitude greater than the profiles collected over the shelf in the entire water column. The difference increases toward the bottom where the dissipation rate of turbulent kinetic energy and the vertical eddy diffusivity on the slope exceed 10?7 W kg?1 and 10?2 m2 s?1, respectively. Elevated levels of turbulence on the slope are concentrated within a 100 m thick bottom layer, which is absent on the shelf. The upper slope is characterized by near-critical slopes and is in close proximity to the critical latitude for semidiurnal internal tides. Our observations suggest that the upper continental slope of the southern Weddell Sea is a generation site of semidiurnal internal tide, which is trapped along the slope along the critical latitude, and dissipates its energy in a inline image m thick layer near the bottom and within inline image km across the slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter attempts to identify some important issues in developing realistic simulation models based on new economic geography, and it suggests a direction for solving the difficulties. Specifically, adopting the IDE Geographical Simulation Model (IDE-GSM) as an example, we discuss some problems in developing a realistic simulation model for East Asia. The first and largest problem in this region is the lack of reliable economic datasets at the sub-national level, and this issue needs to be resolved in the long term. However, to deal with the existing situation in the short term, we utilize some techniques to produce more realistic and reliable simulation models. One key compromise is to use a 'topology' representation of geography, rather than a 'mesh' or 'grid' representation or simple 'straight lines' connecting each city which are used in many other models. In addition to this, a modal choice model that takes into consideration both money and time costs seems to work well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerated silkworm fibers spun through a wet-spinning process followed by an immersion postspinning drawing step show a work to fracture comparable with that of natural silkworm silk fibers in a wide range of spinning conditions. The mechanical behavior and microstructure of these high performance fibers have been characterized, and compared with those fibers produced through conventional spinning conditions. The comparison reveals that both sets of fibers share a common semicrystalline microstructure, but significant differences are apparent in the amorphous region. Besides, high performance fibers show a ground state and the possibility of tuning their tensile behavior. These properties are characteristic of spider silk and not of natural silkworm silk, despite both regenerated and natural silkworm silk share a common composition different from that of spider silk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the electronic industry demands small and complex parts as a consequence of the miniaturization of electronic devices. Powder injection moulding (PIM) is an emerging technique for the manufacturing of magnetic ceramics. In this paper, we analyze the sintering process, between 900 °C and 1300 °C, of Ni–Zn ferrites prepared by PIM. In particular, the densification behaviour, microstructure and mechanical properties of samples with toroidal and bar geometry were analyzed at different temperatures. Additionally, the magnetic behaviour (complex permeability and magnetic losses factor) of these compacts was compared with that of samples prepared by conventional powder compaction. Finally, the mechanical behaviour (elastic modulus, flexure strength and fracture toughness) was analyzed as a function of the powder loading of feedstock. The final microstructure of prepared samples was correlated with the macroscopic behaviour. A good agreement was established between the densities and population of defects found in the materials depending on the sintering conditions. In general, the final mechanical and magnetic properties of PIM samples were enhanced relative those obtained by uniaxial compaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of new signal processing methods, such as non-linear analysis techniques, represents a new perspective which adds further value to brain signals' analysis. Particularly, Lempel–Ziv's Complexity (LZC) has proven to be useful in exploring the complexity of the brain electromagnetic activity. However, an important problem is the lack of knowledge about the physiological determinants of these measures. Although acorrelation between complexity and connectivity has been proposed, this hypothesis was never tested in vivo. Thus, the correlation between the microstructure of the anatomic connectivity and the functional complexity of the brain needs to be inspected. In this study we analyzed the correlation between LZC and fractional anisotropy (FA), a scalar quantity derived from diffusion tensors that is particularly useful as an estimate of the functional integrity of myelinated axonal fibers, in a group of sixteen healthy adults (all female, mean age 65.56 ± 6.06 years, intervals 58–82). Our results showed a positive correlation between FA and LZC scores in regions including clusters in the splenium of the corpus callosum, cingulum, parahipocampal regions and the sagittal stratum. This study supports the notion of a positive correlation between the functional complexity of the brain and the microstructure of its anatomical connectivity. Our investigation proved that a combination of neuroanatomical and neurophysiological techniques may shed some light on the underlying physiological determinants of brain's oscillations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate characterization of the radio channel in tunnels is of great importance for new signaling and train control communications systems. To model this environment, measurements have been taken at 2.4 GHz in a real environment in Madrid subway. The measurements were carried out with four base station transmitters installed in a 2-km tunnel and using a mobile receiver installed on a standard train. First, with an optimum antenna configuration, all the propagation characteristics of a complex subway environment, including near shadowing, path loss,shadow fading, fast fading, level crossing rate (LCR), and average fade duration (AFD), have been measured and computed. Thereafter, comparisons of propagation characteristics in a double-track tunnel (9.8-m width) and a single-track tunnel (4.8-m width) have been made. Finally, all the measurement results have been shown in a complete table for accurate statistical modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of cooling rate on the microstructure of MAR-M247 Ni-based superalloy was investigated via physical simulation of the casting process. Solidification experiments with cooling rates in the range of 0.25–10 K/s showed smooth temperature profiles with measured cooling rates matching the set values. The MAR-M247 showed cellular (0.25 K/s) and dendritic (1, 5 and 10 K/s) microstructures. Microconstituents also varied with cooling rates: γ/γ′ matrix with carbides and γ/γ′ eutectic at 0.25 K/s, γ/γ′ matrix with carbides at 1 K/s, and γ/γ′ matrix with carbides and γ/MC eutectic at 5 and 10 K/s. Moreover, the secondary dendritic arm spacing decreased and the hardness increased with the increase in the cooling rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy and specific energy absorbed in the main cell compartments (nucleus and cytoplasm) in typical radiobiology experiments are usually estimated by calculations as they are not accessible for a direct measurement. In most of the work, the cell geometry is modelled using the combination of simple mathematical volumes. We propose a method based on high resolution confocal imaging and ion beam analysis (IBA) in order to import realistic cell nuclei geometries in Monte-Carlo simulations and thus take into account the variety of different geometries encountered in a typical cell population. Seventy-six cell nuclei have been imaged using confocal microscopy and their chemical composition has been measured using IBA. A cellular phantom was created from these data using the ImageJ image analysis software and imported in the Geant4 Monte-Carlo simulation toolkit. Total energy and specific energy distributions in the 76 cell nuclei have been calculated for two types of irradiation protocols: a 3 MeV alpha particle microbeam used for targeted irradiation and a 239Pu alpha source used for large angle random irradiation. Qualitative images of the energy deposited along the particle tracks have been produced and show good agreement with images of DNA double strand break signalling proteins obtained experimentally. The methodology presented in this paper provides microdosimetric quantities calculated from realistic cellular volumes. It is based on open-source oriented software that is publicly available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling and prediction of the overall elastic–plastic response and local damage mechanisms in heterogeneous materials, in particular particle reinforced composites, is a very complex problem. Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular morphology of the particles, and anisotropy in particle orientation after secondary processing, such as extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone elements. Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: (a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized debonding takes place. The angular particles exhibited higher degree of load transfer and are more sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of particle morphology may lead to erroneous results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of quantum dot, quantum wire, and quantum well InAs/GaAs solar cells is studied with a very simplified model based on experimental results in order to assess their performance as a function of the low bandgap material volume fraction fLOW. The efficiency of structured devices is found to exceed the efficiency of a non-structured GaAs cell, in particular under concentration, when fLOW is high; this condition is easier to achieve with quantum wells. If three different quasi Fermi levels appear with quantum dots the efficiency can be much higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaCu3Ti4O12 (CCTO) was prepared by a conventional synthesis (CS) and through reaction sintering, in which synthesis and sintering of the material take place in one single step. The microstructure and the dielectric properties of CCTO have been studied by XRD, FE-SEM, EDS, AFM, and impedance spectroscopy to correlate structure, microstructure, and electrical properties. Samples prepared by reactive sintering show very similar dielectric behavior to those prepared by CS. Therefore, it is possible to prepare CCTO by means of a single-step processing method.