920 resultados para Reactive Probabilistic Automata
Resumo:
Downscaling of yttria stabilized zirconia (YSZ) based electrochemical devices and gate oxide layers requires successful pattern transfer on YSZ thin films. Among a number of techniques available to transfer patterns to a material, reactive ion etching has the capability to offer high resolution, easily controllable, tunable anisotropic/isotropic pattern transfer for batch processing. This work reports inductively coupled reactive ion etching studies on sputtered YSZ thin films in fluorine and chlorine based plasmas and their etch chemistry analyses using x-ray photoelectron spectroscopy. Etching in SF6 plasma gives an etch rate of 7 nm/min chiefly through physical etching process. For same process parameters, in Cl-2 and BCl3 plasmas, YSZ etch rate is 17 nm/min and 45 nm/min, respectively. Increased etch rate in BCl3 plasma is attributed to its oxygen scavenging property synergetic with other chemical and physical etch pathways. BCl3 etched YSZ films show residue-free and smooth surface. The surface atomic concentration ratio of Zr/Y in BCl3 etched films is closer to as-annealed YSZ thin films. On the other hand, Cl-2 etched films show surface yttrium enrichment. Selectivity ratio of YSZ over silicon (Si), silicon dioxide (SiO2) and silicon nitride (Si3N4) are 1:2.7, 1:1, and 1:0.75, respectively, in BCl3 plasma. YSZ etch rate increases to 53 nm/min when nonoxygen supplying carrier wafer like Si3N4 is used. (C) 2015 American Vacuum Society.
Resumo:
This paper reports the dynamic compression behavior of ultrafine grained (Hf, Zr)B-2-SiC composites, sintered using reactive spark plasma sintering at 1600 degrees C for 10 min. Dynamic strength of similar to 2.3 GPa has been measured using Split Hopkinson Pressure Bar (SHPB) tests in a reproducible manner at strain rates of 800-1300 s(-1). A comparison with competing boride based armor ceramics, in reference to the spectrum of properties evaluated, establishes the potential of (Hf, Zr)B-2-SiC composites for armor applications. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Nearly 50% of India's population depends on variants of pit-toilet systems for human waste disposal. Nitrate contamination of groundwater by pit-toilet leachate is a major environmental concern in the country as it sources a major proportion (50-80%) of potable water from aquifers. Therefore, minimizing nitrate contamination of groundwater due to leachate infiltration from pit-toilet systems is essential. Batch and column experiments demonstrated the capability of bentonite-enhanced sand (BES) specimens to reduce nitrate concentrations in synthetic solutions (initial NO3-N concentration = 22.7 mg/L, C/N = 3) by about 85-90% in 10 to 24 hour by a heterotrophic denitrification process. Based on the laboratory results, it is recommended that use of a BES-permeable reactive barrier layer at the base of pit-toilets will facilitate heterotrophic denitrification and mitigate nitrate contamination of the underlying aquifer.
Resumo:
A model of reactive hot pressing of zirconium carbide (ZrCx, 0.5 < x < 1) has been constructed that incorporates four processes that occur in parallel: creep of zirconium (Zr), reaction of Zr and carbon (C), increase in volume fraction of hard phase with progressive reaction that reduces the creep of Zr and, finally, de-densification associated with volume reduction during reaction. The reasonable agreement of the model with experimental results verifies that plastic deformation of Zr is the main factor that is responsible for the low-temperature reactive densification of ZrC and that ZrC may be treated as a rigid inclusion that contributes little to densification. It predicts that densification is impaired by increasing carbon stoichiometry due to the increasing amount of starting hard phase and the greater contraction upon reaction. Additionally, the model predicts that mixtures of Zr and ZrC should show equal or better densification than Zr and C mixtures.
Resumo:
Reactive interlayers consisting of zero valent iron and copper nanoparticles have been successfully incorporated into Surlyn films to fabricate moisture barrier materials with reduced water vapor permeabilities. The reactive nanoparticles dispersed in stearic acid were employed as the interlayers due to their ability to react with moisture. The water vapor transmission rates through the fabricated barrier films with reactive iron and copper interlayers decreased by over 4 orders of magnitude when compared to neat Surlyn. The flexibility and transparency of the barrier films have been evaluated by tensile and UV-visible experiments. Moreover, the accelerated aging studies conducted in accordance with the ISOS-III protocol confirmed the increased lifetimes of the organic photovoltaic (OPV) devices encapsulated with these reactive barrier films.
Resumo:
This paper proposes a probabilistic prediction based approach for providing Quality of Service (QoS) to delay sensitive traffic for Internet of Things (IoT). A joint packet scheduling and dynamic bandwidth allocation scheme is proposed to provide service differentiation and preferential treatment to delay sensitive traffic. The scheduler focuses on reducing the waiting time of high priority delay sensitive services in the queue and simultaneously keeping the waiting time of other services within tolerable limits. The scheme uses the difference in probability of average queue length of high priority packets at previous cycle and current cycle to determine the probability of average weight required in the current cycle. This offers optimized bandwidth allocation to all the services by avoiding distribution of excess resources for high priority services and yet guaranteeing the services for it. The performance of the algorithm is investigated using MPEG-4 traffic traces under different system loading. The results show the improved performance with respect to waiting time for scheduling high priority packets and simultaneously keeping tolerable limits for waiting time and packet loss for other services. Crown Copyright (C) 2015 Published by Elsevier B.V.
Resumo:
A protocol to efficiently assess Reactive Oxygen Species (ROS) levels in yeast cells using H2DCF-DA is described here. This method employs lithium acetate to permeate the cell wall, and thus, augments the release of the fluorescent product, dichlorofluorescein from the cells. This protocol obviates the need for both physical and enzymatic lysis methods that are arduous and time consuming. This method is simple, less time consuming and reproducible, especially while dealing with a large sample size. The lithium acetate method gave significantly reproducible and linear results (P < 0.0001), as compared with direct measurement (P = 0.0005), sonication (P = 0.1466) and bead beating (P = 0.0028).
Resumo:
In this study, a new reactive power loss index (RPLI) is proposed for identification of weak buses in the system. This index is further used for determining the optimal locations for placement of reactive compensation devices in the power system for additional voltage support. The new index is computed from the reactive power support and loss allocation algorithm using Y-bus method for the system under intact condition and as well as critical/severe network contingencies cases. Fuzzy logic approach is used to select the important and critical/severe line contingencies from the contingency list. The inherent characteristics of the reactive power in system operation is properly addressed while determining the reactive power loss allocation to load buses. The proposed index is tested on sample 10-bus equivalent system and 72-bus practical equivalent system of Indian southern region power grid. The validation of the weak buses identification from the proposed index with that from other existing methods in the literature is carried out to demonstrate the effectiveness of the proposed index. Simulation results show that the identification of weak buses in the system from the new RPLI is completely non-iterative, thus requires minimal computational efforts as compared with other existing methods in the literature.
Resumo:
Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n = 27) and GBM (n = 28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p < 0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-Fc gamma RIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1 beta (IL1 beta) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1 beta neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1 beta which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma discrimination, identified IL1 beta as a potential candidate for developing targeted therapy. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.
Resumo:
Northeast India and its adjoining areas are characterized by very high seismic activity. According to the Indian seismic code, the region falls under seismic zone V, which represents the highest seismic-hazard level in the country. This region has experienced a number of great earthquakes, such as the Assam (1950) and Shillong (1897) earthquakes, that caused huge devastation in the entire northeast and adjacent areas by flooding, landslides, liquefaction, and damage to roads and buildings. In this study, an attempt has been made to find the probability of occurrence of a major earthquake (M-w > 6) in this region using an updated earthquake catalog collected from different sources. Thereafter, dividing the catalog into six different seismic regions based on different tectonic features and seismogenic factors, the probability of occurrences was estimated using three models: the lognormal, Weibull, and gamma distributions. We calculated the logarithmic probability of the likelihood function (ln L) for all six regions and the entire northeast for all three stochastic models. A higher value of ln L suggests a better model, and a lower value shows a worse model. The results show different model suits for different seismic zones, but the majority follows lognormal, which is better for forecasting magnitude size. According to the results, Weibull shows the highest conditional probabilities among the three models for small as well as large elapsed time T and time intervals t, whereas the lognormal model shows the lowest and the gamma model shows intermediate probabilities. Only for elapsed time T = 0, the lognormal model shows the highest conditional probabilities among the three models at a smaller time interval (t = 3-15 yrs). The opposite result is observed at larger time intervals (t = 15-25 yrs), which show the highest probabilities for the Weibull model. However, based on this study, the IndoBurma Range and Eastern Himalaya show a high probability of occurrence in the 5 yr period 2012-2017 with >90% probability.
Resumo:
Quantum cellular automata (QCA) is a new technology in the nanometer scale and has been considered as one of the alternative to CMOS technology. In this paper, we describe the design and layout of a serial memory and parallel memory, showing the layout of individual memory cells. Assuming that we can fabricate cells which are separated by 10nm, memory capacities of over 1.6 Gbit/cm2 can be achieved. Simulations on the proposed memories were carried out using QCADesigner, a layout and simulation tool for QCA. During the design, we have tried to reduce the number of cells as well as to reduce the area which is found to be 86.16sq mm and 0.12 nm2 area with the QCA based memory cell. We have also achieved an increase in efficiency by 40%.These circuits are the building block of nano processors and provide us to understand the nano devices of the future.
Resumo:
The effect of applied pressure on reactive hot pressing (RHP) of zirconium (Zr):graphite (C) in molar ratios of 1:0.5, 1:0.67, 1:0.8, and 1:1 was studied at 1200 degrees C for 60 min. The relative density achievable increased with increasing pressure and ranged from 99% at 4 MPa for ZrC0.5 to 93% for stoichiometric ZrC at 100 MPa. The diminishing influence of pressure on the final density with increasing stoichiometry is attributed to two causes: the decreasing initial volume fraction of the plastically deforming Zr metal which leads to the earlier formation of a contiguous, stress shielding carbide skeleton and the larger molar volume shrinkage during reaction which leads to pore formation in the final stages. A numerical model of the creep densification of a dynamically evolving microstructure predicts densities that are consistent with observations and confirm that the availability of a soft metal is primarily responsible for the achievement of such elevated densification during RHP. The ability to densify nonstoichiometric compositions like ZrC0.5 at pressures as low as 4 MPa offers an alternate route to fabricating dense nonstoichiometric carbides.
Resumo:
Applications of hydriding materials for solid state hydrogen storage, hydrogen compression, thermal energy storage and sorption heating and cooling systems have been demonstrated successfully. However, the performance of these devices significantly depends upon heat and mass transfer characteristics of the reactive packed beds. One of the important parameters regulating heat and mass transfer in the hydriding bed is its effective thermal conductivity (ETC), which is dependent on several operating parameters such as pressure and temperature. ETC also varies significantly due to the variation of hydrogen concentration during the hydriding and dehydriding processes. Based on the extensive studies done by the authors on ETC of metal hydride beds, a review of experimental methods, mathematical studies and augmentation techniques is presented in this paper, with emphasis on the effects of operating parameters on ETC. (C) 2016 Elsevier Ltd. All rights reserved.