947 resultados para Rayleigh-Benard Convection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A remarkably increased coagulation rate for 2-mu m PS spheres was previously reported for a perikinetic coagulation experiment performed under microgravity conditions (1998, R. Folkersma, A. J. G. van Diemen, and H. N. Stein, J. Colloid Interface Sci. 206, 482); from this experiment, it was assumed that the leading factor slowing the coagulation process under normal gravitation was free convection due to gravity (1998, R. Folkersma, and H. N. Stein, J. Colloid Interface Sci. 206, 494). To test the influence of free convection as a single-effect factor on the coagulation process, a ground-based experiment was constructed. The coagulation rate of 2-mu m PS spheres dispersed in water was determined by measuring the turbidity of the dispersion solution while convection-driven flows in the solution were checked with a visual magnification system. We found that it was possible to cease free convection-driven particle flows on the ground, as long as the experiments were carefully operated. The strength of convection was controlled by changing the temperature gradient applied to the sample cell. By monitoring both the coagulation rate and convection-driven flows simultaneously, our experiments showed that weak free convection (maximum speed <150 mu m/s) actually has negligible effects on the coagulation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer.A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Bénard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Biot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Biot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processes of the onset oscillation in the thermocapillaxy convection under the Earth's gravity are investigated by the numerical simulation and experiments in a floating half zone of large Prandtl number with different volume ratio. Both computational and experimental results show that the steady and axisymmetric convection turns to the oscillatory convection of m=1 for the slender liquid bridge, and to the oscillatory convection before a steady and 3D asymmetric state for the case of a fat liquid bridge. It implies that, there are two critical Marangoni numbers related, respectively, to these two bifurcation transitions for the fat liquid bridge. The computational results agree with the results of ground-based experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermocapillary instabilities on floating half zone convection in microgravity environment were investigated by linear instability analysis method. The critical Marangoni numbers were obtained and compared with the experimental ones. The influences of the liquid bridge volume and the aspect ratio on the critical Marangoni number were analyzed. It is found that the liquid bridge volume and the aspect ratio have great influence on the critical Marangoni number. There was a gap region where the oscillatory convection will not be observed in present analyses and in experiments in the curve of the critical Marangoni number vs the liquid bridge volume for the case of large Prandtl number and small aspect ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unsteady and three-dimensional model of the floating-half-zone convection on the ground is studied by the direct numerical simulation for the medium of 10 cSt silicon oil, and the influence of the liquid bridge volume on the critical applied temperature difference is especially discussed. The marginal curves for the onset of oscillation are separated into two branches related, respectively, to the slender liquid bridge and the fat liquid bridge. The oscillatory features of the floating-half-zone convection are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liquid bridge volume is a critical geometrical parameter in addition to the aspect ratio for onset of oscillation in the floating zone convection. The oscillatory features are generally divided into two characteristic regions: slender liquid bridge region and fat liquid bridge region. The oscillatory modes in two regions are discussed in the present paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was assumed [1, 2] that gravity affects the coagulation process in two ways: free convection, which is hard to be avoided on the ground and sedimentation, which can be greatly reduced by the density-matching method. We present a ground-based experiment set-up to study the influence of convection on the perikinetic coagulation for aqueous polystyrene (PS) dispersions. The turbidity measurement was used to evaluate the relative coagulation rate and convection-driven flows in the solution were checked with a visual-magnification system. The pattern of flow field temperature profile in the sample cell is given. Our experiments show that there was no noticeable difference of coagulation rate observed no matter whether convection flows exist (with the flow speed up to 180 mu m/s) or not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides an overview of ongoing studies in the area of thermocapillary convection driven by a surface tension gradient parallel to the free surface in a floating zone. Here, research interests are focused around the onset of oscillatory thermocapillary convection, also known as the transition from quasisteady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, and the margin relationship can be represented by a complex function of the critical parameters. The experimental results indicate that the velocity deviation of an oscillatory flow has the same order of magnitude as that of an average flow, and the deviations of other quantities, such as temperature and free surface radii fluctuations, are much smaller when compared with their normal counterparts. Therefore, the onset of oscillation should be a result of the dynamic process in a fluid, and the problem is a strongly nonlinear one. In the past few decades, several theoretical models have been introduced to tackle the problem using analytical methods, linear instability analysis methods, energy instability methods, and unsteady 3D numerical methods. The last of the above mentioned methods is known to be the most suitable for a thorough analysis of strong nonlinear processes, which generally leads to a better comparison with the experimental results. The transition from oscillatory thermocapillary convection to turbulence falls under the studies of chaotic behavior in a new system, which opens a fascinating new frontier in nonlinear science, a hot research area drawing many recent works. This paper reviews theoretical models and analysis, and also experimental research, on thermocapillary connection in floating zones. It cites 93 references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermocapillary convection coupling with the evaporation effect of evaporating liquids is studied experimentally. This study focused on an evaporation liquid layer in a rectangular cavity subjected to a horizontal temperature gradient when the top evaporating surface is open to air, while most previous works only studied pure thermocapillary convection without evaporation. Two liquids with different evaporating rates are used to study the coupling of evaporation and thermocapillary convection, and the interfacial temperature profiles for different temperature gradients are measured. The experimental results indicate evidently the influence of evaporation effect on the thermocapillary convection and interfacial temperature profiles. The steady multicellular flow and the oscillatory multicellular flow in the evaporation liquid layer are observed by using the particle-image-velocimetry method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pearson instability was suggested to discuss the onset of Marangoni convection in a liquid layer of large Prandtl number under an applied temperature difference perpendicular to the free surface in the microgravity environment. In this case, the temperature distribution on the curved free surface is nonuniform, and the thermocapillary convection is induced and coupled with the Marangoni convection. In the present paper the effect of volume ratio of the liquid layer on the critical Marangoni convection and the corresponding spatial variation of the convection structure in zero-gravity condition were numerically investigated by two-dimensional model. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present numerical simulations of thermosolutal convection for directional solidification of Al-3.5 wt% Ni and Al-7 wt% Si. Numerical results predict that fragmentation of dendrite arms resulting from dissolution could be favored in Al-7 wt% Si, but not in Al-3.5 wt% Ni. Corresponding experiments are in qualitative agreement with the numerical predictions. Distinguishing the two fragmentation mechanisms, namely dissolution and remelting, is critical during experiments on earth, when fluid flow is dominant. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear stability analysis was performed to study the mechanism of transition of thermocapillary convection in liquid bridges with liquid volume ratios ranging from 0.4 to 1.2, aspect ratio of 0.75 and Prandtl number of 100. 2-D governing equations were solved to obtain the steady axi-symmetric basic flow and temperature distributions. 3-D perturbation equations were discretized at the collocation grid points using the Chebyshev-collocation method. Eigenvalues and eigenfunctions were obtained by using the Q-R. method. The predicted critical Marangoni numbers and critical frequencies were compared with data from space experiments. The disturbance of the temperature distribution on the free surface causes the onset of oscillatory convection. It is shown that the origin of instability is related to the hydrothermal origin for convections in large-Prandtl-number liquid bridges. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the surface deformations of buoyant-thermocapillary convection in a rectangular cavity clue to gravity and temperature gradient between the two sidewalls. The cavity is 52mm x 42mm in horizontal cross section, the thickness of liquid layer h is changed from 2.5mm to 6.5mm. Surface deformations of h = 3.5mm and 6.0mm are discussed and compared. Temperature difference is increased gradually, and the flow in the liquid layer will change from stable convection to unstable convection. Two kinds of optical diagnostic system with image processor are developed for study of the kinetics of buoyant-thermocapillary convection, they give out the information of liquid free surface. The quantitative results are calculated by Fourier transform and correlation analysis, respectively. With the increasing temperature gradient, surface deformations calculated are more declining. It is interesting phenomenon that the inclining directions of the convections in thin and thick liquid layers are different. For a thin layer, the convection is mainly controlled by thermocapillary effect. However, for a thick layer, the convection is mainly controlled by buoyancy effect. The surface deformation theoretically analysed is consistent with our experimental results. The present experiment proves that surface deformation is related to temperature gradient and thickness of the liquid layer. In other words, surface deformation lies on capillary convection and buoyancy convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the macroscopic drying patterns of aqueous suspensions of colloidal silica spheres. It was found that convection strength can influence pattern formation. Uniformed films are obtained at weaker convection strength. In addition, we make clear that it is not reasonable to discuss individually the effect of temperature and humidity on the colloid self-assembly. The physical mechanism is that these factors have relationship with the evaporation rate, which can affect the convection strength.