951 resultados para RNA interference (RNAi)
Resumo:
Background: Resistance to targeted anti-angiogenic therapy is a growing clinical concern given the disappointing clinical impact of anti-angiogenic. Platelets represent a component of the tumor microenvironment that are implicated in metastasis and represent a significant reservoir of angiogenic regulators. Thrombocytosis has been shown to be caused by malignancy and associated with adverse clinical outcomes, however the causal connections between these associations remain to be identified. Materials and Methods: Following IRB approval, patient data were collected on patients from four U.S. centers and platelet levels through and after therapy were considered as indicators of recurrence of disease. In vitro effects of platelets on cancer cell proliferation, apoptosis, and migration were examined. RNA interference was used to query signaling pathways mediating these effects. The necessity of platelet activation for in vitro effect was analyzed. In vivo orthotopic models were used to query the impact of thrombocytosis and thrombocytopenia on the efficacy of cytotoxic chemotherapy, the effect of aspirin on thrombocytosis and cancer, and platelet effect on anti-angiogenic therapy. Results: Platelets were found to increase at the time of diagnosis of ovarian cancer recurrence in a pattern comparable to CA-125. Platelet co-culture increased proliferation, increased migration, and decreased apoptosis in all cell lines tested. RNA interference implicated platelet derived growth factor alpha (PDGFRA) and transforming growth factor beta-receptor 1 (TGFBR1) signaling. Biodistribution studies suggested minimal platelet sequestration of taxanes. Blockade of platelet activation blocked in vitro effects. In vivo, thrombocytosis blocked chemotherapeutic efficacy, thrombocytopenia increased chemotherapeutic efficacy, and aspirin therapy partially blocked the effects of thrombocytosis. In vivo, withdrawal of anti-angiogenic therapy caused loss of therapeutic benefit with evidence of accelerated disease growth. This effect was blocked by use of a small-molecule inhibitor of Focal Adhesion Kinase. Anti-angiogenic therapy was also associated with increased platelet infiltration into tumor that was not seen to the same degree in the control or FAK-inhibitor-treated mice. Conclusions: Platelets are active participants in the growth and metastasis of tumor, both directly and via facilitation of angiogenesis. Blocking platelets, blocking platelet activation, and blocking platelet trafficking into tumor are novel therapeutic avenues supported by this data. Copyright © 2012 Justin Neal Bottsford-Miller, all rights reserved.
Resumo:
INTERACTION BETWEEN BRK AND HER2 IN BREAST CANCER Midan Ai, Ph.D. Supervisory Professor: Zhen Fan, M.D. Breast tumor kinase (Brk) is a nonreceptor protein-tyrosine kinase that is highly expressed in approximately two thirds of breast cancers but is not detectable or is expressed at very low levels in normal mammary epithelium. Brk plays important roles in promoting proliferation, survival, invasion, and metastasis of breast cancer cells, but the mechanism(s) of which remain largely unknown. Recent studies showed that Brk is frequently co-overexpressed with human epidermal growth factor receptor-2 (HER2) and is physically associated with HER2 in breast cancer. The mechanism needs to be determined. In my studies, I found that high expression of HER2 is correlated with high expression of Brk in breast cancer cell lines. Silencing HER2 expression via RNA interference in HER2 over-expressed breast cancer cells resulted in Brk protein decrease and overexpression of HER2 in HER2 low-expressed breast cancer cells up-regulated Brk expression. The mechanism study indicated that overexpression of HER2 increased Brk protein stability. Brk was degraded through a Ca2+-dependent protease pathway involving calpain and HER2 stimulated Brk expression via inhibiting calpain activity. Calpastatin is a calpain endogenous inhibitor and the calpain-calpastatin system has been implicated in a number of cell physiological functions. HER2 restrained calpain activation via up-regulating calpastatin expression and HER2 downstream signaling, MAPK pathway, was involved in the regulation. Furthermore, silencing of Brk expression by RNA interference in HER2-overexpressing breast cancer cells decreased HER2-mediated cell proliferation, survival, invasion/metastasis potential and increased cell sensitivity to HER2 kinase inhibitor, lapatinib, treatment, indicating that Brk plays important roles in regulating and mediating the oncogenic functions of HER2. The Stat3 pathway played important roles in Brk mediated cell survival and invasion/metastasis in the context of HER2-overexpressing breast cancer cells. However, transgenic mice with inducible expression of constitutively active Brk (CA) in the mammary epithelium failed to develop malignant change in the mammary glands after Brk induction for 15 months which indicated that expression of Brk protein alone was not sufficiently to induce spontaneous breast tumor. Bitransgenic mice with co-expression of HER2/neu and inducible expression of Brk in the mammary epithelium developed multifocal mammary tumors, but there were no significant difference in the tumor occurring time, tumor size, tumor weight and tumor multiplicity between the mouse group with co-expression of Brk and HER2/neu and the mouse group with HER2/neu expression only.
Resumo:
In Caenorhabditis elegans, pre-mRNA for the essential splicing factor U2AF65 sometimes is spliced to produce an RNA that includes an extra 216-bp internal exon, exon 3. Inclusion of exon 3 inserts an in-frame stop codon, yet this RNA is not subject to SMG-mediated RNA surveillance. To test whether exon 3 causes RNA to remain nuclear and thereby escape decay, we inserted it into the 3′ untranslated region of a gfp reporter gene. Although exon 3 did not affect accumulation or processing of the mRNA, it dramatically suppressed expression of green fluorescent protein (GFP). We showed by in situ hybridization that exon 3-containing gfp RNA is retained in the nucleus. Intriguingly, exon 3 contains 10 matches to the 8-bp 3′ splice-site consensus. We hypothesized that U2AF might recognize this octamer and thereby prevent export. This idea is supported by RNA interference experiments in which reduced levels of U2AF resulted in a small burst of gfp expression.
Resumo:
Mediator proteins are required for transcriptional regulation of most genes in yeast. Mammalian Mediator homologs also function as transcriptional coactivators in vitro; however, their physiological role in gene-specific transcription is not yet known. To determine the role of Mediator proteins in the development of complex organisms, we purified putative Mediator complexes from Caenorhabditis elegans and analyzed their phenotypes in vivo. C. elegans Mediator homologs were assembled into two multiprotein complexes. RNA interference assays showed that the CeMed6, CeMed7, and CeMed10/CeNut2 gene products are required for the expression of developmentally regulated genes, but are dispensable for expression of the ubiquitously expressed genes tested in this study. Therefore, the gene-specific function of Mediator as an integrator of transcriptional regulatory signals is evolutionarily conserved and is essential for C. elegans development.
Resumo:
A panel of mAbs was elicited against intracellular membrane fractions from rat pancreas. One of the antibodies reacted with a 95-kDa protein that localizes primarily to the Golgi complex or the endoplasmic reticulum (ER), depending on cell type. The corresponding cDNA was cloned and sequenced and found to encode a protein of 97.6 kDa that we call GERp95 (Golgi ER protein 95 kDa). The protein copurifies with intracellular membranes but does not contain hydrophobic regions that could function as signal peptides or transmembrane domains. Biochemical analysis suggests that GERp95 is a cytoplasmically exposed peripheral membrane protein that exists in a protease-resistant complex. GERp95 belongs to a family of highly conserved proteins in metazoans and Schizosaccharomyces pombe. It has recently been determined that plant and Drosophila homologues of GERp95 are important for controlling the differentiation of stem cells (Bohmert et al., 1998; Cox et al., 1998; Moussian et al., 1998). In Caenorhabditis elegans, there are at least 20 members of this protein family. To this end, we have used RNA interference to show that the GERp95 orthologue in C. elegans is important for maturation of germ-line stem cells in the gonad. GERp95 and related proteins are an emerging new family of proteins that have important roles in metazoan development. The present study suggests that these proteins may exert their effects on cell differentiation from the level of intracellular membranes.
Resumo:
Antisense-mediated gene silencing (ASGS) and posttranscriptional gene silencing (PTGS) with sense transgenes markedly reduce the steady-state mRNA levels of endogenous genes similar in transcribed sequence. RNase protection assays established that silencing in tobacco plants transformed with plant-defense-related class I sense and antisense chitinase (CHN) transgenes is at the posttranscriptional level. Infection of tobacco plants with cucumber mosaic virus strain FN and a necrotizing strain of potato virus Y, but not with potato virus X, effectively suppressed PTGS and ASGS of both the transgenes and homologous endogenes. This suggests that ASGS and PTGS share components associated with initiation and maintenance of the silent state. Small, ca. 25-nt RNAs (smRNA) of both polarities were associated with PTGS and ASGS in CHN transformants as reported for PTGS in other transgenic plants and for RNA interference in Drosophila. Similar results were obtained with an antisense class I β-1,3-glucanase transformant showing that viral suppression and smRNAs are a more general feature of ASGS. Several current models hold that diverse signals lead to production of double-stranded RNAs, which are processed to smRNAs that then trigger PTGS. Our results provide direct evidence for mechanistic links between ASGS and PTGS and suggest that ASGS could join a common PTGS pathway at the double-stranded RNA step.
Resumo:
The eukaryotic translation initiation factor 2 alpha (eIF2α) is part of the initiation complex that drives the initiator amino acid methionine to the ribosome, a crucial step in protein translation. In stress conditions such as virus infection, endoplasmic reticulum (ER) stress, amino acid or heme deficiency eIF2α can be phosphorylated and thereby inhibit global protein synthesis. This adaptive mechanism prevents protein accumulation and consequent cytotoxic effects. Heme-regulated eIF2α kinase (HRI) is a member of the eIF2α kinase family that regulates protein translation in heme deficiency conditions. Although present in all tissues, HRI is predominantly expressed in erythroid cells where it remains inactive in the presence of normal heme concentrations. In response to heme deficiency, HRI is activated and phosphorylates eIF2α decreasing globin synthesis. This mechanism is important to prevent accumulation of heme-free globin chains which cause ER stress and apoptosis. RNA sequencing data from our group showed that in human islets and in primary rat beta cells HRI is the most expressed eIF2α kinase compared to the other family members. Despite its high expression levels, little is known about HRI function in beta cells. The aim of this project is to identify the role of HRI in pancreatic beta cells. This was investigated taking a loss-of-function approach. HRI knock down (KD) by RNA interference induced beta cell apoptosis in basal condition. HRI KD potentiated the apoptotic effects of palmitate or proinflammatory cytokines, two in vitro models for type 2 and type 1 diabetes, respectively. Increased cytokine-induced apoptosis was also observed in HRI-deficient primary rat beta cells. Unexpectedly, we observed a mild increase in eIF2α phosphorylation in HRI-deficient cells. The levels of mRNA or protein expression of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) were not modified. HRI KD cells have decreased spliced X-box binding protein 1 (XBP1s), an important branch of the ER stress response. However, overexpression of XBP1s by adenovirus in HRI KD cells did not protect from HRI siRNA-induced apoptosis. HRI deficiency decreased phosphorylation of Akt and its downstream targets glycogen synthase kinase 3 (GSK3), forkhead box protein O1 (FOXO1) and Bcl-2-associated death promoter (BAD). Overexpression of a constitutively active form of Akt by adenovirus in HRI-deficient beta cells partially decreased HRI KD-mediated apoptosis. Interestingly, BAD silencing protected from apoptosis caused by HRI deficiency. HRI silencing in beta cells also induced JNK activation. These results suggest an important role of HRI in beta cell survival through modulation of the Akt/BAD pathway. Thus, HRI may be an interesting target to modulate beta cell fate in diabetic conditions.
Resumo:
L’initiation de la leucémogénèse dans la leucémie aigue lymphoblastique (LAL)-T résulte de l’activation aberrante de facteurs de transcription de la lignée lymphocytaire T. Nous démontrons que les gènes de fusion NUP98-PHF23 (NP23) et NUP98-HOXD13 (NHD13) reprogramment les thymocytes normaux en cellules souches pré-leucémiques (CS-préL) possédant un potentiel aberrant d’auto-renouvellement. Basé sur des essais de clonalité performés sur des thymocytes transplantés en série, nous avons découvert que cette population est hiérarchisée similairement aux cellules souches hématopoïétiques normales. Ces CS-préL dévoilent un enrichissement du compartiment de précurseurs thymiques immatures KIT+ où les deux oncogènes, NP23 et NHD13, activent des gènes impliqués dans l’autorenouvellement, incluant Hoxa9, Hoxa10, Lyl1 et Hhex. De plus, l’activité d’autorenouvellement est abrogée par les ARN interférents contre Lyl1 et Hhex, indiquant leur implication fonctionnelle en aval de NP23 et NHD13. Puisque ces gènes sont aussi activés en aval de trois autres oncogènes dans la LAL-T, SCL/TAL1, LMO1 et LMO2, nous concluons que les niveaux d’activation de Lyl1 et Hhex fixent le seuil de reprogrammation des thymocytes normaux en CS-préL. Malgré l'efficacité des traitements de chimiothérapie actuels à diminuer la masse tumorale, les CS-préL sont épargnées, pouvant mener à des rechutes. Nos résultats répondent à ce besoin et proposent de nouvelles avenues permettant de cibler les CS-préL du compartiment de thymocytes immatures dans la LAL-T.
Resumo:
Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.
Resumo:
Antisense transcription (transcription from the opposite strand to a protein-coding or sense strand) has been ascribed roles in gene regulation involving degradation of the corresponding sense transcripts (RNA interference), as well as gene silencing at the chromatin level. Global transcriptome analysis provides evidence that a large proportion of the genome can produce transcripts from both strands, and that antisense transcripts commonly link neighboring genes in complex loci into chains of linked transcriptional units. Expression profiling reveals frequent concordant regulation of sense/antisense pairs. We present experimental evidence that perturbation of an antisense RNA can alter the expression of sense messenger RNAs, suggesting that antisense transcription contributes to control of transcriptional outputs in mammals.
Resumo:
Dendrimers are nonviral vectors that have attracted interest on account of a number of features. They are structurally versatile because their size, shape, and surface charge can be selectively altered. Here we examine the functions of a new family of composite dendrimers that were synthesized with lipidic amino acid cores. These dendrimers are bifunctional because they are characterized by positively charged (lysine) modules for interaction with nucleic acids and neutral lipidic moieties for membrane lipid-bilayer transit. We assessed their structure-function correlations by a combination of molecular and biophysical techniques. Our assessment revealed an unexpected pleitropy of functions subserved by these vectors that included plasmid and oligonucleotide delivery. We also generated a firefly luciferase cell line in which we could modulate luciferase activity by RNA interference. We found that these vectors could also mediate RNA suppression of luciferase expression by delivering double-stranded luciferase transcripts generated in vitro. The structural uniqueness of these lipidic peptide dendrimers coupled with their ease and specificity of assembly and the versatility in their choice of cargo, puts them in a new category of macromolecule carriers. These vectors, therefore, have potential applications as epigenetic modifiers of gene function. (C) 2004 Wiley-Liss, Inc. and the American Pharmacists Association.
Resumo:
The APTX gene, mutated in patients with the neurological disorder ataxia with oculomotor apraxia type 1 (AOA1), encodes a novel protein aprataxin. We describe here, the interaction and interdependence between aprataxin and several nucleolar proteins, including nucleolin, nucleophosmin and upstream binding factor-1 (UBF-1), involved in ribosomal RNA (rRNA) synthesis and cellular stress signalling. Interaction between aprataxin and nucleolin occurred through their respective N-terminal regions. In AOA1 cells lacking aprataxin, the stability of nucleolin was significantly reduced. On the other hand, down-regulation of nucleolin by RNA interference did not affect aprataxin protein levels but abolished its nucleolar localization suggesting that the interaction with nucleolin is involved in its nucleolar targeting. GFP-aprataxin fusion protein co-localized with nucleolin, nucleophosmin and UBF-1 in nucleoli and inhibition of ribosomal DNA transcription altered the distribution of aprataxin in the nucleolus, suggesting that the nature of the nucleolar localization of aprataxin is also dependent on ongoing rRNA synthesis. In vivo rRNA synthesis analysis showed only a minor decrease in AOA1 cells when compared with controls cells. These results demonstrate a cross-dependence between aprataxin and nucleolin in the nucleolus and while aprataxin does not appear to be directly involved in rRNA synthesis its nucleolar localization is dependent on this synthesis.
Resumo:
The southern cattle tick, Boophilus microplus (Canestrini), causes annual economic losses in the hundreds of millions of dollars to cattle producers throughout the world, and ranks as the most economically important tick from a global perspective. Control failures attributable to the development of pesticide resistance have become commonplace, and novel control technologies are needed. The availability of the genome sequence will facilitate the development of these new technologies, and we are proposing sequencing to a 4-6X draft coverage. Many existing biological resources are available to facilitate a genome sequencing project, including several inbred laboratory tick strains, a database of approximate to 45,000 expressed sequence tags compiled into a B. microplus Gene Index, a bacterial artificial chromosome (BAC) library, an established B. microplus cell line, and genomic DNA suitable for library synthesis. Collaborative projects are underway to map BACs and cDNAs to specific chromosomes and to sequence selected BAC clones. When completed, the genome sequences from the cow, B. microphis, and the B. microphis-borne pathogens Babesia bovis and Anaplasma marginale will enhance studies of host-vector-pathogen systems. Genes involved in the regeneration of amputated tick limbs and transitions through developmental stages are largely unknown. Studies of these and other interesting biological questions will be advanced by tick genome sequence data. Comparative genomics offers the prospect of new insight into many, perhaps all, aspects of the biology of ticks and the pathogens they transmit to farm animals and people. The B. microplus genome sequence will fill a major gap in comparative genomics: a sequence from the Metastriata lineage of ticks. The purpose of the article is to synergize interest in and provide rationales for sequencing the genome of B. microplus and for publicizing currently available genomic resources for this tick.
Resumo:
Co-suppression of transgenes and their homologous viral sequences by RNA silencing is a powerful strategy for achieving high-level virus resistance in plants. This review provides a brief overview of RNA silencing mechanisms in plants and discusses important transgene construct design features underpinning successful RNA silencing-mediated transgenic virus control. Application of those strategies to protect horticultural and field crops from virus infection and results of field tests are also provided. The effectiveness and stability of RNA-mediated transgenic resistance are assessed taking into account effects of viral, plant and environmental factors.
Resumo:
The mechanisms of signal transduction and vesicular transport have traditionally been studied in isolation, but recent studies make it clear that the two processes are inextricably linked. A new genome-wide analysis of human kinases using RNA interference shows an unexpected depth and complexity to the interactions between these processes.