945 resultados para RF stacking
Resumo:
The atom transfer radical polymerization (ATRP) of styrene (St) was conducted in the presence of varying equivalence (eq) of hexafluorobenzene (HFB) and octafluorotoluene (OFT) to probe the effects of pi-pi stacking on the rate of the polymerization and on the tacticity of the resulting polystyrene (PSt). The extent of the pi-pi stacking interaction between HFB/OFT and the terminal polystyrenic phenyl group was also investigated as a function of solvent, both non-aromatic solvents (THF and hexanes) and aromatic solvents (benzene and toluene). In all cases the presence of HFB or OFT resulted in a decrease in monomer conversion indicating a reduction in the rate of the polymerization with greater retardation of the rate with increase eq of HFB or OFT (0.5 eq to 1 eq HFB/OFT compared to St). Additionally, when aromatic solvents were used instead of non-aromatic solvents the effect of the HFB/OFT on the rate was minimized, consistent with the aromatic solvent competitively interacting with the HFB/OFT. The effects of temperature and ligand strength on the ATRP of St in the presence of HFB were also probed. It was found that when using N,N,N’,N’,N’’-pentamethyldiethylenetriamine (PMDETA) as the ligand the effects of HFB at 38o were the same as at 86oC. When tris[2-(dimethylamino)ethyl]-amine (Me6TREN) was used as the ligand at 38o there was a decrease in monomer conversion similar to the analogous PMDETA reaction. When the polymerization was conducted at 86oC there was no effect on the monomer conversion with HFB present compared to when HFB was absent. To investigate the pi-pi stacking effect even further, the reverse pi-pi stacking system was observed by conducting the ATRP of pentafluorostyrene (PFSt) in the presence of varying eq of benzene and toluene, which in both cases resulted in an increase in monomer conversion compared to when benzene or toluene were absent; in summary the rate of the ATRP of PFSt increases when benzene or toluene waas present in the reaction. The pi-pi stacking interaction between the HFB/OFT and the dormant alkyl bromide of the polymer chain was verified by 1H-NMR with 1-bromoethylbenzene as the alkyl bromide. Also verified by 1H-NMR was the interaction between HFB/OFT and St and the interaction between PFSt and benzene. In all 1H-NMR spectra a perturbation in the aromatic and/or vinyl peaks was observed when the pi-pi stacking agent was present compared to when it was absent. The tacticity of the PSt formed in the presence of 1 eq of HFB was compared to the PSt formed in the absence of HFB by observing the C1 signal in their 13C-NMR spectra, but no change in shape or chemical shift of the signal was observed indicating that there was no change in tacticity.
Resumo:
The dynamics of focusing weak bases using a transient pH boundary was examined via high-resolution computer simulation software. Emphasis was placed on the mechanism and impact that the presence of salt, namely, NaCl, has on the ability to focus weak bases. A series of weak bases with mobilities ranging from 5 x 10(-9) to 30 x 10(-9) m2/V x s and pKa values between 3.0 and 7.5 were examined using a combination of 65.6 mM formic acid, pH 2.85, for the separation electrolyte, and 65.6 mM formic acid, pH 8.60, for the sample matrix. Simulation data show that it is possible to focus weak bases with a pKa value similar to that of the separation electrolyte, but it is restricted to weak bases having an electrophoretic mobility of 20 x 10(-9) m2/V x s or quicker. This mobility range can be extended by the addition of NaCl, with 50 mM NaCl allowing stacking of weak bases down to a mobility of 15 x 10(-9) m2/V x s and 100 mM extending the range to 10 x 10(-9) m2/V x s. The addition of NaCl does not adversely influence focusing of more mobile bases, but does prolong the existence of the transient pH boundary. This allows analytes to migrate extensively through the capillary as a single focused band around the transient pH boundary until the boundary is dissipated. This reduces the length of capillary that is available for separation and, in extreme cases, causes multiple analytes to be detected as a single highly efficient peak.
Resumo:
One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.
Resumo:
The synthesis and incorporation into oligonucleotides of C-nucleosides containing the two aromatic, non-hydrogen-bonding nucleobase substitutes biphenyl (I) and bipyridyl (Y) are described. Their homo- and hetero-recognition properties in different sequential arrangements were then investigated via UV-melting curve analysis, gel mobility assays, CD- and NMR spectroscopy. An NMR analysis of a dodecamer duplex containing one biphenyl pair in the center, as well as CD data on duplexes with multiple insertions provide further evidence for the zipper-like interstrand stacking motif that we proposed earlier based on molecular modeling. UV-thermal melting experiments with duplexes containing one to up to seven I- or Y base pairs revealed a constant increase in T(m) in the case of I and a constant decrease for Y. Mixed I/Y base pairs lead to stabilities in between the homoseries. Insertion of alternating I/abasic site- or Y/abasic site pairs strongly decreases the thermal stability of duplexes. Asymmetric distribution of I- or Y residues on either strand of the duplex were also investigated in this context. Duplexes with three natural base pairs at both ends and 50 % of I pairs in the center are still readily formed, while duplexes with blunt ended I pairs tend to aggregate unspecifically. Duplexes with one natural overhang at the end of a I-I base pair tract can both aggregate or form ordered duplexes, depending on the nature of the natural bases in the overhang
Resumo:
Since multi-site reconstructions are less affected by site-specific climatic effects and artefacts, regional palaeotemperature reconstructions based on a number of sites can provide more robust estimates of centennial- to millennial-scale temperature trends than individual, site-specific records. Furthermore, reconstructions based on multiple records are necessary for developing continuous climate records over time scales longer than covered by individual sequences. Here, we present a procedure for developing such reconstructions based on relatively short (centuries to millennia), discontinuously sampled records as are typically developed when using biotic proxies in lake sediments for temperature reconstruction. The approach includes an altitudinal correction of temperatures, an interpolation of individual records to equal time intervals, a stacking procedure for sections of the interval of interest that have the same records available, as well as a splicing procedure to link the individual stacked records into a continuous reconstruction. Variations in the final, stacked and spliced reconstruction are driven by variations in the individual records, whereas the absolute temperature values are determined by the stacked segment based on the largest number of records. With numerical simulations based on the NGRIP δ18O record, we demonstrate that the interpolation and stacking procedure provides an approximation of a smoothed palaeoclimate record if based on a sufficient number of discontinuously sampled records. Finally, we provide an example of a stacked and spliced palaeotemperature reconstruction 15000–90 calibrated 14C yr BP based on six chironomid records from the northern and central Swiss Alps and eastern France to discuss the potential and limitations of this approach.
Resumo:
No Abstract