997 resultados para RESISTANT SURFACES
Resumo:
In this paper we associate a new geometric invariant to the space of fiat connections on a G (= SU(2))-bundle on a compact Riemann surface M and relate it tcr the symplectic structure on the space Hom(pi(1)(M), G)/G consisting of representations of the fundamental group pi(1)(M) Of M into G module the conjugate action of G on representations.
Resumo:
Time evolution of mean-squared displacement based on molecular dynamics for a variety of adsorbate-zeolite systems is reported. Transition from ballistic to diffusive behavior is observed for all the systems. The transition times are found to be system dependent and show different types of dependence on temperature. Model calculations on a one-dimensional system are carried out which show that the characteristic length and transition times are dependent on the distance between the barriers, their heights, and temperature. In light of these findings, it is shown that it is possible to obtain valuable information about the average potential energy surface sampled under specific external conditions.
Resumo:
An angle invariance property based on Hertz's principle of particle dynamics is employed to facilitate the surface-ray tracing on nondevelopable hybrid quadric surfaces of revolution (h-QUASOR's). This property, when used in conjunction with a Geodesic Constant Method, yields analytical expressions for all the ray-parameters required in the UTD formulation. Differential geometrical considerations require that some of the ray-parameters (defined heuristically in the UTD for the canonical convex surfaces) be modified before the UTD can be applied to such hybrid surfaces. Mutual coupling results for finite-dimensional slots have been presented as an example on a satellite launch vehicle modeled by general paraboloid of revolution and right circular cylinder.
Resumo:
Expressions for various second-order derivatives of surface tension with respect to composition at infinite dilution in terms of the interaction parameters of the surface and those of the bulk phases of dilute ternary melts have been presented. A method of deducing the parameters, which consists of repeated differentiation of Butler's equations with subsequent application of the appropriate boundary conditions, has been developed. The present investigation calculates the surface tension and adsorption functions of the Fe-S-O melts at 1873 and 1923 K using the modified form of Butler's equations and the derived values for the surface interaction parameters of the system. The calculated values are found to be in good agreement with those of the experimental data of the system. The present analysis indicates that the energetics of the surface phase are considerably different from those of the bulk phase. The present research investigates a critical compositional range beyond which the surface tension increases with temperature. The observed increase in adsorption of sulfur with consequent desorption of oxygen as a function of temperature above the critical compositional range has been ascribed to the increase of activity ratios of oxygen to sulfur in the surface relative to those in the bulk phase of the system.
Resumo:
We consider the following question: Let S (1) and S (2) be two smooth, totally-real surfaces in C-2 that contain the origin. If the union of their tangent planes is locally polynomially convex at the origin, then is S-1 boolean OR S-2 locally polynomially convex at the origin? If T (0) S (1) a (c) T (0) S (2) = {0}, then it is a folk result that the answer is yes. We discuss an obstruction to the presumed proof, and provide a different approach. When dim(R)(T0S1 boolean AND T0S2) = 1, we present a geometric condition under which no consistent answer to the above question exists. We then discuss conditions under which we can expect local polynomial convexity.
Resumo:
A geometric invariant is associated to the space of fiat connections on a G-bundle over a compact Riemann surface and is related to the energy of harmonic functions.
Resumo:
A clear definition of an approximate parametrization of the curve of intersection of (n-1) implicit surfaces in Rn is given. It is justified that marching methods yield such an approximation.
Resumo:
Adsorption of dioxygen at clean Ni(110) and Ni(100) surfaces gives rise to two prominent features in the O(1s) spectra at 530 and 531 eV due to O2- and O- type species, respectively. Interaction of ammonia with a Ni(100)-O surface where theta(oxygen) < 0.1 ML favors the dissociation of NH3 giving NHn, (n = 1, 2) and N(a) species. This is accompanied by a decrease in the intensity of the 531 eV feature. On the other hand. a Ni(100)-O surface where the oxygen species are mainly of the O2- type is unreactive, Coadsorption studies of NH3-O-2 mixtures show that at Ni(110) surfaces the uptake of both oxygen and ammonia increase with the proportion of oxygen in the NH3-O-2 mixture. The surface concentrations of the O- species and the NHn species also increase with the increase in the O-2/NH3 ratio while the slope of the plot of sigma(N) versus sigma(O-) is around unity. The results demonstrate the high surface reactivity of the O- species and its role in the dissociation of ammonia. Based on these observations, the possibility of the formation of a surface complex between ammonia and oxygen (specifically O-) is suggested. Results from vibrational spectroscopic studies of the coadsorption of NH3-O-2 mixtures are consistent with those from core-level spectroscopic studies.
Resumo:
A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power-law type non-Newtonian fluids along horizontal surfaces with variable heat flux distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.
Resumo:
Interaction of CH3OH with Cu clusters deposited on ZnO films grown on a Zn foil as well as on a ZnO(0001)Zn crystal, has been examined by X-ray photoelectron spectroscopy. On clean Cu clusters, reversible molecular adsorption or formation of CH3O is observed. However if the Cu clusters are pretreated with oxygen, both CH3O and HCOO- species are produced. Model Cu/ZnO catalyst surfaces, containing both Cu1+ and Cu-0 species, show interesting oxidation properties. On a Cu-0-rich catalyst surface, only CH3O species is formed on interaction with CH3OH. On a Cu1+-rich surface, however, HCOO- ion is the predominant species.
Resumo:
The list of possible G-H symmetries for triply-periodic balance surfaces, given by Koch and Fischer, is studied with a view to finding new types. It is found that balance surfaces exist for all the cases that were labelled as undecided in the work of Koch and Fischer. For some of these, new minimal surfaces have been found, with the aid of Brakke's 'Surface Evolver'. (C) 1997 Elsevier Science B.V.
Resumo:
The alkoxy species produced by the interaction of alcohols with Zn surfaces undergoes C-O bond scission at 150 K giving hydrocarbon species, but this transformation occurs even at 80 K when alcohol-oxygen mixtures are coadsorbed, due to the oxygen transients.