959 resultados para REGULATORY RNA
Resumo:
BACKGROUND: In mammals, ChIP-seq studies of RNA polymerase II (PolII) occupancy have been performed to reveal how recruitment, initiation and pausing of PolII may control transcription rates, but the focus is rarely on obtaining finely resolved profiles that can portray the progression of PolII through sequential promoter states. RESULTS: Here, we analyze PolII binding profiles from high-coverage ChIP-seq on promoters of actively transcribed genes in mouse and humans. We show that the enrichment of PolII near transcription start sites exhibits a stereotypical bimodal structure, with one peak near active transcription start sites and a second peak 110 base pairs downstream from the first. Using an empirical model that reliably quantifies the spatial PolII signal, gene by gene, we show that the first PolII peak allows for refined positioning of transcription start sites, which is corroborated by mRNA sequencing. This bimodal signature is found both in mouse and humans. Analysis of the pausing-related factors NELF and DSIF suggests that the downstream peak reflects widespread pausing at the +1 nucleosome barrier. Several features of the bimodal pattern are correlated with sequence features such as CpG content and TATA boxes, as well as the histone mark H3K4me3. CONCLUSIONS: We thus show how high coverage DNA sequencing experiments can reveal as-yet unnoticed bimodal spatial features of PolII accumulation that are frequent at individual mammalian genes and reminiscent of transcription initiation and pausing. The initiation-pausing hypothesis is corroborated by evidence from run-on sequencing and immunoprecipitation in other cell types and species.
Resumo:
Chromatin insulators are defined as transcriptionally neutral elements that prevent negative or positive influence from extending across chromatin to a promoter. Here we show that yeast subtelomeric anti-silencing regions behave as boundaries to telomere-driven silencing and also allow discontinuous propagation of silent chromatin. These two facets of insulator activity, boundary and silencing discontinuity, can be recapitulated by tethering various transcription activation domains to tandem sites on DNA. Importantly, we show that these insulator activities do not involve direct transcriptional activation of the reporter promoter. These findings predict that certain promoters behave as insulators and partition genomes in functionally independent domains.
Resumo:
BACKGROUND: Hepatitis C virus (HCV) infection is a major cause of morbidity in HIV infected individuals. Coinfection with HIV is associated with diminished HCV-specific immune responses and higher HCV RNA levels. AIMS: To investigate whether long-term combination antiretroviral therapy (cART) restores HCV-specific T cell responses and improves the control of HCV replication. METHODS: T cell responses were evaluated longitudinally in 80 HIV/HCV coinfected individuals by ex vivo interferon-gamma-ELISpot responses to HCV core peptides, that predominantly stimulate CD4(+) T cells. HCV RNA levels were assessed by real-time PCR in 114 individuals. RESULTS: The proportion of individuals with detectable T cell responses to HCV core peptides was 19% before starting cART, 24% in the first year on cART and increased significantly to 45% and 49% after 33 and 70 months on cART (p=0.001). HCV-specific immune responses increased in individuals with chronic (+31%) and spontaneously cleared HCV infection (+30%). Median HCV RNA levels before starting cART were 6.5 log(10) IU/ml. During long-term cART, median HCV-RNA levels slightly decreased compared to pre-cART levels (-0.3 log10 IU/ml, p=0.02). CONCLUSIONS: Successful cART is associated with increasing cellular immune responses to HCV core peptides and with a slight long-term decrease in HCV RNA levels. These findings are in line with the favourable clinical effects of cART on the natural history of hepatitis C and with the current recommendation to start cART earlier in HCV/HIV coinfected individuals.
Resumo:
This dissertation focuses on the practice of regulatory governance, throughout the study of the functioning of formally independent regulatory agencies (IRAs), with special attention to their de facto independence. The research goals are grounded on a "neo-positivist" (or "reconstructed positivist") position (Hawkesworth 1992; Radaelli 2000b; Sabatier 2000). This perspective starts from the ontological assumption that even if subjective perceptions are constitutive elements of political phenomena, a real world exists beyond any social construction and can, however imperfectly, become the object of scientific inquiry. Epistemologically, it follows that hypothetical-deductive theories with explanatory aims can be tested by employing a proper methodology and set of analytical techniques. It is thus possible to make scientific inferences and general conclusions to a certain extent, according to a Bayesian conception of knowledge, in order to update the prior scientific beliefs in the truth of the related hypotheses (Howson 1998), while acknowledging the fact that the conditions of truth are at least partially subjective and historically determined (Foucault 1988; Kuhn 1970). At the same time, a sceptical position is adopted towards the supposed disjunction between facts and values and the possibility of discovering abstract universal laws in social science. It has been observed that the current version of capitalism corresponds to the golden age of regulation, and that since the 1980s no government activity in OECD countries has grown faster than regulatory functions (Jacobs 1999). Following an apparent paradox, the ongoing dynamics of liberalisation, privatisation, decartelisation, internationalisation, and regional integration hardly led to the crumbling of the state, but instead promoted a wave of regulatory growth in the face of new risks and new opportunities (Vogel 1996). Accordingly, a new order of regulatory capitalism is rising, implying a new division of labour between state and society and entailing the expansion and intensification of regulation (Levi-Faur 2005). The previous order, relying on public ownership and public intervention and/or on sectoral self-regulation by private actors, is being replaced by a more formalised, expert-based, open, and independently regulated model of governance. Independent regulation agencies (IRAs), that is, formally independent administrative agencies with regulatory powers that benefit from public authority delegated from political decision makers, represent the main institutional feature of regulatory governance (Gilardi 2008). IRAs constitute a relatively new technology of regulation in western Europe, at least for certain domains, but they are increasingly widespread across countries and sectors. For instance, independent regulators have been set up for regulating very diverse issues, such as general competition, banking and finance, telecommunications, civil aviation, railway services, food safety, the pharmaceutical industry, electricity, environmental protection, and personal data privacy. Two attributes of IRAs deserve a special mention. On the one hand, they are formally separated from democratic institutions and elected politicians, thus raising normative and empirical concerns about their accountability and legitimacy. On the other hand, some hard questions about their role as political actors are still unaddressed, though, together with regulatory competencies, IRAs often accumulate executive, (quasi-)legislative, and adjudicatory functions, as well as about their performance.
Resumo:
This communication reports the specific induction of calmodulin kinase IV by the thyroid hormone 3,3',5-triiodo-L-thyronine (T3) in a time- and concentration-dependent manner at a very early stage of brain differentiation using a fetal rat telencephalon primary cell culture system, which can grow and differentiate under chemically defined conditions. The induction of the enzyme that can be observed both on the mRNA and on the protein level is T3-specific, i.e. it cannot be induced by retinoic acid or reverse T3, and can be inhibited on both the transcriptional and the translational level by adding to the culture medium actinomycin D or cycloheximide, respectively. The earliest detection of calmodulin kinase IV in the fetal brain tissue of the rat is at days E16/E17, both on the mRNA as well as on the protein level. This is the first report in which a second messenger-dependent kinase involved in the control of cell regulatory processes is itself controlled by a primary messenger, the thyroid hormone.
Resumo:
In this study, HIV-1 viral load quantitation determined by Nucleic Acid Sequence Based Amplification (NASBA) was compared with other surrogate disease progression markers (antigen p24, CD4/CD8 cell counts and b-2 microglobulin) in 540 patients followed up at São Paulo, SP, Brazil. HIV-1 RNA detection was statistically associated with the presence of antigen p24, but the viral RNA was also detected in 68% of the antigen p24 negative samples, confirming that NASBA is much more sensitive than the determination of antigen p24. Regarding other surrogate markers, no statistically significant association with the detection of viral RNA was found. The reproducibility of this viral load assay was assessed by 14 runs of the same sample, using different reagents batches. Viral load values in this sample ranged from 5.83 to 6.27 log (CV = 36 %), less than the range (0.5 log) established to the determination of significant viral load changes.
Resumo:
Hypertension is a serious medical problem affecting millions of people worldwide. A key protein regulating blood pressure is the Epithelial Na(+) Channel (ENaC). In accord, loss of function mutations in ENaC (PHA1) cause hypotension, whereas gain of function mutations (Liddle syndrome) result in hypertension. The region mutated in Liddle syndrome, called the PY motif (L/PPxY), serves as a binding site for the ubiquitin ligase Nedd4-2, a C2-WW-Hect E3 ubiquitin ligase. Nedd4-2 binds the ENaC-PY motif via it WW domains, ubiquitylates the channel and targets it for endocytosis, a process impaired in Liddle syndrome due to poor binding of the channel to Nedd4-2. This leads to accumulation of active channels at the cell surface and increased Na(+) (and fluid) absorption in the distal nephron, resulting in elevated blood volume and blood pressure. Compounds that destabilize cell surface ENaC, or enhance Nedd4-2 activity in the kidney, could potentially serve as drug targets for hypertension. In addition, recent discoveries of regulation of activation of ENaC by proteases such as furin, prostasin and elastase, which cleave the extracellular domain of this channel leading to it activation, as well as the identification of inhibitors that block the activity of these proteases, provide further avenues for drug targeting of ENaC and the control of blood pressure.
Resumo:
Non-coding small RNAs (sRNAs) have important regulatory functions in bacteria. In Pseudomonas spp., about 40 sRNAs have been reported until the end of 2008, a number that almost certainly is an underestimate. We provide a summary of the coding regions for these sRNAs is Pseudomonas aeruginosa. The functions of some Pseudomonas sRNAs can be deduced from those of homologous well-characterized sRNAs of Escherichia coli, e.g. 6S RNA (a stationary phase regulator of RNA polymerase) and tmRNA (a component of a machinery serving to eliminate truncated polypeptides). Two sRNAs of P. aeruginosa, PrrF1 and PrrF2, whose expression is repressed by the Fur repressor in the presence of iron, inhibit translation initiation of mRNAs specifying superoxide dismutase (sodB), succinate dehydrogenase (sdhABCD) and anthranilate degradation (antABC), via a base-paring mechanism. As a consequence, these mRNAs are poorly expressed under conditions of iron limitation. Two further sRNAs of P. aeruginosa, RsmY and RsmZ, whose expression is positively controlled by the GacS/GacA two-component system in response to unknown signals, act as scavengers of the RNA-binding protein RsmA. In this way, translational repression exerted by RsmA on target mRNAs can be relieved. The Gac/Rsm signal transduction pathway globally regulates motility and the formation of extracellular products in pseudomonas spp.
Resumo:
ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.
Resumo:
MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
Independent regulatory agencies are one of the main institutional features of the 'rising regulatory state' in Western Europe. Governments are increasingly willing to abandon their regulatory competencies and to delegate them to specialized institutions that are at least partially beyond their control. This article examines the empirical consistency of one particular explanation of this phenomenon, namely the credibility hypothesis, claiming that governments delegate powers so as to enhance the credibility of their policies. Three observable implications are derived from the general hypothesis, linking credibility and delegation to veto players, complexity and interdependence. An independence index is developed to measure agency independence, which is then used in a multivariate analysis where the impact of credibility concerns on delegation is tested. The analysis relies on an original data set comprising independence scores for thirty-three regulators. Results show that the credibility hypothesis can explain a good deal of the variation in delegation. The economic nature of regulation is a strong determinant of agency independence, but is mediated by national institutions in the form of veto players.