960 resultados para REDUCED PRESSURE
Resumo:
Objective: Adherence to Continuous Positive Airway Pressure Therapy (CPAP) for Obstructive Sleep Apnoea (OSA) is poor. We assessed the effectiveness of a motivational interviewing intervention (MINT) in addition to best practice standard care to improve acceptance and adherence to CPAP therapy in people with a new diagnosis of OSA. Method: 106 Australian adults (69% male) with a new diagnosis of obstructive sleep apnoea and clinical recommendation for CPAP treatment were recruited from a tertiary sleep disorders centre. Participants were randomly assigned to receive either three sessions of a motivational interviewing intervention ‘MINT’ (n=53; mean age=55.4 years), or no intervention ‘Control’ (n=53; mean age=57.74). The primary outcome was the difference between the groups in objective CPAP adherence at 1 month, 2 months, 3 months and 12 months follow-up. Results: Fifty (94%) participants in the MINT group and 50 (94%) of participants in the control group met all inclusion and exclusion criteria and were included in the primary analysis. The hours of CPAP use per night in the MINT group at 3 months was 4.63 hours and 3.16 hours in the control group (p=0.005). This represents almost 50% better adherence in the MINT group relative to the control group. Patients in the MINT group were substantially more likely to accept CPAP treatment. Conclusions: MINT is a brief, manualized, effective intervention which improves CPAP acceptance and objective adherence rates as compared to standard care alone.
Resumo:
Young drivers, aged 17 to 24 years, have the highest fatality rate in Australia. It is believed that part of this risk is due to pressure from peer passengers to engage in speeding; which may be active (i.e., verbal encouragement) or passive (i.e., perceived pressure on the part of the driver). The Theory of Planned Behaviour (TPB) was used to investigate this impact of peer passengers on young drivers, particularly the influence of the type of peer pressure and a driver’s level of identification with their passengers. A scenario-based questionnaire was constructed, informed by focus groups and pilot studies, and distributed to university students (N = 398). The questionnaire measured participants’ intentions and the TPB constructs, including two components of perceived behaviour control, within a baseline scenario as well as an experimental scenario in which the variables of type of pressure and identification were manipulated. Consistent with the hypotheses, the study found that attitudes and self-efficacy significantly predicted intentions over and above the variance explained by the sociodemographic variables of age, gender, self-esteem, sensation seeking, as well as past behaviour and exposure. Across the scenarios, attitudes explained between 4.3% and 14.5%, while self-efficacy to refrain from speeding explained between 4.9% and 17.1%, of the unique variance in intentions to speed. However, contrary to expectations, intentions to speed were found to be higher in the “no passenger” than “passenger present” conditions, although this finding is not completely inconsistent with recent literature. A high level of identification with passengers led to higher intentions to speed than low identification as expected, but, inconsistent with expectations, different types of pressure (i.e., active versus passive) did not influence intentions to speed.
Resumo:
The effect of sample geometry on the melting rates of burning iron rods was assessed. Promoted-ignition tests were conducted with rods having cylindrical, rectangular, and triangular cross-sectional shapes over a range of cross-sectional areas. The regression rate of the melting interface (RRMI) was assessed using a statistical approach which enabled the quantification of confidence levels for the observed differences in RRMI. Statistically significant differences in RRMI were observed for rods with the same cross-sectional area but different cross-sectional shape. The magnitude of the proportional difference in RRMI increased with the cross-sectional area. Triangular rods had the highest RRMI, followed by rectangular rods, and then cylindrical rods. The dependence of RRMI on rod shape is shown to relate to the action of molten metal at corners. The corners of the rectangular and triangular rods melted faster than the faces due to their locally higher surface area to volume ratios. This phenomenon altered the attachment geometry between liquid and solid phases, increasing the surface area available for heat transfer, causing faster melting. Findings relating to the application of standard flammability test results in industrial situations are also presented.
Resumo:
Failing injectors are one of the most common faults in diesel engines. The severity of these faults could have serious effects on diesel engine operations such as engine misfire, knocking, insufficient power output or even cause a complete engine breakdown. It is thus essential to prevent such faults from occurring by monitoring the condition of these injectors. In this paper, the authors present the results of an experimental investigation on identifying the signal characteristics of a simulated incipient injector fault in a diesel engine using both in-cylinder pressure and acoustic emission (AE) techniques. A time waveform event driven synchronous averaging technique was used to minimize or eliminate the effect of engine speed variation and amplitude fluctuation. It was found that AE is an effective method to detect the simulated injector fault in both time (crank angle) and frequency (order) domains. It was also shown that the time domain in-cylinder pressure signal is a poor indicator for condition monitoring and diagnosis of the simulated injector fault due to the small effect of the simulated fault on the engine combustion process. Nevertheless, good correlations between the simulated injector fault and the lower order components of the enveloped in-cylinder pressure spectrum were found at various engine loading conditions.
Resumo:
Twin studies offer the opportunity to determine the relative contribution of genes versus environment in traits of interest. Here, we investigate the extent to which variance in brain structure is reduced in monozygous twins with identical genetic make-up. We investigate whether using twins as compared to a control population reduces variability in a number of common magnetic resonance (MR) structural measures, and we investigate the location of areas under major genetic influences. This is fundamental to understanding the benefit of using twins in studies where structure is the phenotype of interest. Twenty-three pairs of healthy MZ twins were compared to matched control pairs. Volume, T2 and diffusion MR imaging were performed as well as spectroscopy (MRS). Images were compared using (i) global measures of standard deviation and effect size, (ii) voxel-based analysis of similarity and (iii) intra-pair correlation. Global measures indicated a consistent increase in structural similarity in twins. The voxel-based and correlation analyses indicated a widespread pattern of increased similarity in twin pairs, particularly in frontal and temporal regions. The areas of increased similarity were most widespread for the diffusion trace and least widespread for T2. MRS showed consistent reduction in metabolite variation that was significant in the temporal lobe N-acetylaspartate (NAA). This study has shown the distribution and magnitude of reduced variability in brain volume, diffusion, T2 and metabolites in twins. The data suggest that evaluation of twins discordant for disease is indeed a valid way to attribute genetic or environmental influences to observed abnormalities in patients since evidence is provided for the underlying assumption of decreased variability in twins.
Resumo:
Objective: To determine the major health related risk factors and provide evidence for policy-making,using health burden analysis on selected factors among general population from Shandong province. Methods: Based on data derived from the Third Death of Cause Sampling Survey in Shandong. Years of life lcrat(YLLs),yearS Iived with disability(YLDs)and disability-adjusted life years(DALYs) were calculated according to the GBD ethodology.Deaths and DALYs attributed to the selected risk factors were than estimated together with the PAF data from GBD 2001 study.The indirect method was employed to estimate the YLDs. Results: 51.09%of the total dearlls and 31.83%of the total DALYs from the Shandong population were resulted from the 19 selected risk factors.High blood pre.ure,smoking,low fruit and vegetable intake,aleohol consumption,indoor smoke from solid fuels,high cholesterol,urban air pollution, physical inactivity,overweight and obesity and unsafe injections in health care settings were identified as the top 10 risk faetors for mortality which together caused 50.21%of the total deaths.Alcohol use,smoking,high blood pressure,Low fruit and vegetable intake, indoor smoke from solid fuels, overweight and obesity,high cholesterol, physical inactivity,urban air pollution and iron-deficiency anemia were proved as the top 10 risk factors related to disease burden and were responsible for 29.04%of the total DALYs. Conclusion: Alcohol use.smoking and high blood pressure were determined as the major risk factors which influencing the health of residents in Shandong. The mortality and burden of disease could be reduced significantly if these major factors were effectively under control.
Resumo:
Discrete Markov random field models provide a natural framework for representing images or spatial datasets. They model the spatial association present while providing a convenient Markovian dependency structure and strong edge-preservation properties. However, parameter estimation for discrete Markov random field models is difficult due to the complex form of the associated normalizing constant for the likelihood function. For large lattices, the reduced dependence approximation to the normalizing constant is based on the concept of performing computationally efficient and feasible forward recursions on smaller sublattices which are then suitably combined to estimate the constant for the whole lattice. We present an efficient computational extension of the forward recursion approach for the autologistic model to lattices that have an irregularly shaped boundary and which may contain regions with no data; these lattices are typical in applications. Consequently, we also extend the reduced dependence approximation to these scenarios enabling us to implement a practical and efficient non-simulation based approach for spatial data analysis within the variational Bayesian framework. The methodology is illustrated through application to simulated data and example images. The supplemental materials include our C++ source code for computing the approximate normalizing constant and simulation studies.
Resumo:
We develop and test a theoretically-based integrative framework of key proximal factors (orientation, pressure, and control) that helps to explain the effects of more general factors (the organisation's strategy, structure, and environment) on intentions to adopt an innovation one year later. Senior managers from 134 organizations were surveyed and confirmatory factor analyses showed that these hypothesized core factors provided a good fit to the data, indicating that our framework can provide a theoretical base to the previous, largely a theoretical, literature. Moreover, in a subgroup of 63 organizations, control mediated the effects of organizational strategy and centralisation on organizational innovation adoption intentions one year later. We suggest this model of core factors enables researchers to understand why certain variables are important to organisational innovation adoption and promotes identification of fertile research areas around orientation, pressure and control, and it enables managers to focus on the most proximal triggers for increasing innovation adoption.
Resumo:
A novel reduced-size microstrip rectangular patch antenna for Bluetooth operation is presented in this paper. The proposed antenna operates in the 2400 to 2484 MHz ISM Band. Although an air substrate is introduced, antenna occupies a small volume of 33.3×6.6×0.8 mm3. The gain and the impedance bandwidth of the antenna are predicted using a commercial Finite Element Method software package. The predicted results show good agreement with measured data.
Resumo:
An array of monopole elements with reduced element spacing of λ/6 to λ/20 is considered for application in digital beam-forming and direction-finding. The small element spacing introduces strong mutual coupling between the array elements. This paper discusses that decoupling can be achieved analytically for arrays with three elements and describes Kuroda’s identities to realize the lumped elements of the derived decoupling network. Design procedures and equations are proposed. Experimental results are presented. The decoupled array has a bandwidth of 1% and a superdirective radiation pattern.
Resumo:
This paper addresses the problem of degradations in adaptive digital beam-forming (DBF) systems caused by mutual coupling between array elements. The focus is on compact arrays with reduced element spacing and, hence, strongly coupled elements. Deviations in the radiation patterns of coupled and (theoretically) uncoupled elements can be compensated for by weight-adjustments in DBF, but SNR degradation due to impedance mismatches cannot be compensated for via signal processing techniques. It is shown that this problem can be overcome via the implementation of a RF-decoupling-network. SNR enhancement is achieved at the cost of a reduced frequency bandwidth and an increased sensitivity to dissipative losses in the antenna and matching network structure.
Resumo:
Seat pressure is known as a major factor of seat comfort in vehicles. In passenger vehicles, there is lacking research into the seat comfort of rear seat occupants. As accurate seat pressure measurement requires significant effort, simulation of seat pressure is evolving as a preferred method. However, analytic methods are based on complex finite element modeling and therefore are time consuming and involve high investment. Based on accurate anthropometric measurements of 64 male subjects and outboard rear seat pressure measurements in three different passenger vehicles, this study investigates if a set of parameters derived from seat pressure mapping are sensitive enough to differentiate between different seats and whether they correlate with anthropometry in linear models. In addition to the pressure map analysis, H-Points were measured with a coordinate measurement system based on palpated body landmarks and the range of H-Point locations in the three seats is provided. It was found that for the cushion, cushion contact area and cushion front area/force could be modeled by subject anthropometry,while only seatback contact area could be modeled based on anthropometry for all three vehicles. Major differences were found between the vehicles for other parameters.
Resumo:
Purpose: To assess the accuracy of intraocular pressure(IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) and silicone hydrogel (senofilcon A) contact lenses (CLs) of different powers. Methods: The experimental group comprised 36 subjects (19 male, 17 female). IOP measurements were undertaken on the subject’s right eyes in random order using a rebound tonometer (ICare). The CLs had powers of +2.00D, −2.00D and−6.00D. Six measurements were taken over each contact lens and also before and after the CLs had been worn. Results: A good correlation was found between IOP measurements with and without CLs (all r≥0.80; p < 0.05). Bland Altman plots did not show any significant trend in the difference in IOP readings with and without CLs as a function of IOP value. A two-way ANOVA revealed a significant effect of material and power (p < 0.01) but no interaction. All the comparisons between the measurements without CLs and with hydrogel CLs were significant (p < 0.01). The comparisons with silicone hydrogel CLs were not significant. Conclusions: Rebound tonometry can be reliably performed over silicone hydrogel CLs. With hydrogel CLs, the measurements were lower than those without CLs. However, despite the fact that these differences were statistically significant, their clinical significance was minimal.
Resumo:
Performance of locomotor pointing tasks (goal-directed locomotion) in sport is typically constrained by dynamic factors, such as positioning of opponents and objects for interception. In the team sport of association football, performers have to coordinate their gait with ball displacement when dribbling and when trying to prevent opponent interception when running to kick a ball. This thesis comprises two studies analysing the movement patterns during locomotor pointing of eight experienced youth football players under static and dynamic constraints by manipulating levels of ball displacement (ball stationary or moving) and defensive pressure (defenders absent, or positioned near or far during performance). ANOVA with repeated measures was used to analyse effects of these task constraints on gait parameters during the run-up and cross performance sub-phase. Experiment 1 revealed outcomes consistent with previous research on locomotor pointing. When under defensive pressure, participants performed the run-up more quickly, concurrently modifying footfall placements relative to the ball location over trials. In experiment 2 players coordinated their gait relative to a moving ball significantly differently when under defensive pressure. Despite no specific task instructions being provided beforehand, context dependent constraints interacted to influence footfall placements over trials and running velocity of participants in different conditions. Data suggest that coaches need to manipulate task constraints carefully to facilitate emergent movement behaviours during practice in team games like football.