995 resultados para R-loops
Resumo:
The potential energy surfaces of both neutral and dianionic SnC(2)P(2)R(2) (R=H, tBu) ring systems have been explored at the B3PW91/LANL2DZ (Sn) and 6-311 + G* (other atoms) level. In the neutral isomers the global minimum is a nido structure in which a 1,2-diphosphocyclobutadiene ring (1,2-DPCB) is capped by the Sn. Interestingly, the structure established by Xray diffraction analysis, for R=tBu, is a 1,3-DPCB ring capped by Sn and it is 2.4 kcal mol(-1) higher in energy than the 1,2-DPCB ring isomer. This is possibly related to the kinetic stability of the 1,3-DPCB ring, which might originate from the synthetic precursor ZrCp(2)tBu(2)C(2)P(2). In the case of the dianionic isomers we observe only a 6 pi-electron aromatic structure as the global minimum, similarly to the cases of our previously reported results with other types of heterodiphospholes.([1,4,19]) The existence of large numbers of cluster-type isomers in neutral and 6 pi-planar structures in the dianions SnC(2)P(2)R(2)(2-) (R=H, tBu) is due to 3D aromaticity in neutral clusters and to 2D pi aromaticity of the dianionic rings. Relative energies of positional isomers mainly depend on: 1) the valency and coordination number of the Sn centre, 2) individual bond strengths, and 3) the steric effect of tBu groups. A comparison of neutral stannadiphospholes with other structurally related C(5)H(5)(+) analogues indicates that Sn might be a better isolobal analogue to P(+) than to BH or CH(+). The variation in global minima in these C(5)H(5)(+) analogues is due to characteristic features such as 1) the different valencies of C, B, P and Sn, 2) the electron deficiency of B, 3) weaker p pi-p pi bonding by P and Sn atoms, and 4) the tendency of electropositive elements to donate electrons to nido clusters. Unlike the C5H5+ systems, all C(5)H(5)(-) analogues have 6 pi-planar aromatic structures as global minima. The differences in the relative ordering of the positional isomers and ligating properties are significant and depend on 1) the nature of the pi orbitals involved, and 2) effective overlap of orbitals.
Resumo:
Internal vibration modes of bis-(alkylammonium) tetrachlorometallates(II) and the corresponding alkylammonium chlorides have been studied through their phase transitions using infrared spectroscopy. The studies show that the vibrational states of alkylammonium ions change markedly through the phase transitions. Spectra of the analogous tetrabromometallates and alkylammonium bromides also confirm this behaviour. There is appreciable motion of the alkylammonium ions in the high-temperature phases; thus, CH3NH+3 ions are essentially undistorted in these phases. The low-temperature, ordered phases show evidence of stronger hydrogen bonding of the cations and for the presence of C—N torsional modes.
Resumo:
In this talk I discuss some aspects of the study of electric dipole moments (EDMs) of the fermions, in the context of R-parity violating (\rpv) Supersymmetry (SUSY). I will start with a brief general discussion of how dipole moments, in general, serve as a probe of physics beyond the Standard Model (SM) and an even briefer summary of \rpv SUSY. I will follow by discussing a general method of analysis for obtaining the leading fermion mass dependence of the dipole moments and present its application to \rpv SUSY case. Then I will summarise the constraints that the analysis of $e,n$ and $Hg$ EDMs provide for the case of trilinear \rpv SUSY couplings and make a few comments on the case of bilinear \rpv, where the general method of analysis proposed by us does not work.
Resumo:
Use of some new planes such as the R-x, R2-x (where R represents in the n-dimensional phase space, the radius vector from the origin to any point on the trajectory described by the system) is suggested for analysis of nonlinear systems of any kind. The stability conditions in these planes are given. For easy understanding of the method, the transformation from the phase plane to the R-x, R2-x planes is brought out for second-order systems. In general, while these planes serve as useful as the phase plane, they have proved to be simpler in determining quickly the general behavior of certain classes of second-order nonlinear systems. A chart and a simple formula are suggested to evaluate time easily from the R-x and R2-x trajectories, respectively. A means of solving higher-order nonlinear systems is also illustrated. Finally, a comparative study of the trajectories near singular points on the phase plane and on the new planes is made.
Resumo:
A cylindrical pore of similar to 7.5 angstrom diameter containing a one-dimensional water wire, within the confines of a hydrophobic channel lined with the valine side chain, has been observed in crystals of the peptide Boc-D-Pro-Aib-Val-Aib-Val-OMe (1) (Raghavender et al., 2009, 2010). The synthesis and structural characterization in crystals of three backbone homologated analogues Boc-D-Pro-Aib-beta(3)(R) Val-Aib-Val-OMe (2), Boc-D-Pro-Aib-gamma(4)(R)Val-Aib-Val-OMe (3), Boc-D-Pro-Aib-gamma(4)(S)Val-Aib-Val-OMe (4) are described. Crystal structures of peptides 2, 3 and 4 reveal close-packed arrangements in which no pore was formed. In peptides 2 and 3 the N-terminus D-Pro-Aib segment adopted conformations closely related to Type II' beta-turns, while residues 2-4 form one turn of an alpha beta right-handed C-11 helix in 2 and an alpha gamma C-12 helix in 3. In peptide 4, a continuous left-handed helical structure was observed with the D-Pro-Aib segment forming a Type III' beta-turn, followed by one turn of a left-handed alpha gamma C-12 helix. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We have carried out synchrotron based high-pressure x-ray diffraction study of orthorhombic EuMnO3, GdMnO3, TbMnO3 and DyMnO3 up to 54.4, 41.6, 47.0 and 50.2 GPa, respectively. The diffraction peaks of all the four manganites shift monotonically to higher diffraction angles and the crystals retain the orthorhombic structure till the highest pressure. We have fitted the observed volume versus pressure data with the Birch-Murnaghan equation of state and determined the bulk modulus to be 185 +/- 6 GPa, 190 +/- 16 GPa, 188 +/- 9 GPa and 192 +/- 8 GPa for EuMnO3, GdMnO3, TbMnO3 and DyMnO3, respectively. The bulk modulus of EuMnO3 is comparable to other manganites, in contrast to theoretical predictions.
Resumo:
The exoloops of glycoprotein hormone receptors (GpHRs) transduce the signal generated by the ligand-ectodomain interactions to the transmembrane helices either through direct hormonal contact and/or by modulating the interdomain interactions between the hinge region (HinR) and the transmembrane domain (TMD). The ligand-induced conformational alterations in the HinRs and the interhelical loops of luteinizing hormone receptor/follicle stimulating hormone receptor/thyroid stimulating hormone receptor were mapped using exoloop-specific antibodies generated against a mini-TMD protein designed to mimic the native exoloop conformations that were created by joining the thyroid stimulating hormone receptor exoloops constrained through helical tethers and library-derived linkers. The antibody against the mini-TMD specifically recognized all three GpHRs and inhibited the basal and hormone-stimulated cAMP production without affecting hormone binding. Interestingly, binding of the antibody to all three receptors was abolished by prior incubation of the receptors with the respective hormones, suggesting that the exoloops are buried in the hormone-receptor complexes. The antibody also suppressed the high basal activities of gain-of-function mutations in the HinRs, exoloops, and TMDs such as those involved in precocious puberty and thyroid toxic adenomas. Using the antibody and point/deletion/chimeric receptor mutants, we demonstrate that changes in the HinR-exoloop interactions play an important role in receptor activation. Computational analysis suggests that the mini-TMD antibodies act by conformationally locking the transmembrane helices by means of restraining the exoloops and the juxta-membrane regions. Using GpHRs as a model, we describe a novel computational approach of generating soluble TMD mimics that can be used to explain the role of exoloops during receptor activation and their interplay with TMDs.
Resumo:
Let G be the group . For this group we prove a version of Schwartz's theorem on spectral analysis for the group G. We find the sharp range of Lebesgue spaces L (p) (G) for which a smooth function is not mean periodic unless it is a cusp form. Failure of the Schwartz-like theorem is also proved when C (a)(G) is replaced by L (p) (G) with suitable p. We show that the last result is linked with the failure of the Wiener-tauberian theorem for G.
Resumo:
Low grade thermal energy from sources such as solar, geothermal and industrial waste heat in the temperature range of 380-425 K can be converted to electrical energy with reasonable efficiency using isopentane and R-245fa. While the former is flammable and the latter has considerable global warming potential, their mixture in 0.7/0.3 mole fraction is shown to obviate these disadvantages and yet retain dominant merits of each fluid. A realistic thermodynamic analysis is carried out wherein the possible sources of irreversibilities such as isentropic efficiencies of the expander and the pump and entropy generation in the regenerator, boiler and condenser are accounted for. The performance of the system in the chosen range of heat source temperatures is evaluated. A technique of identifying the required source temperature for a given output of the plant and the maximum operating temperature of the working fluid is developed. This is based on the pinch point occurrence in the boiler and entropy generation in the boiling and superheating regions of the boiler. It is shown that cycle efficiencies of 10-13% can be obtained in the range investigated at an optimal expansion ratio of 7-10. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The solution conformations of the -hybrid oligopeptides Boc-Aib-4(R)Val]n-OMe (n = 1-8) in organic solvents have been probed by NMR, IR, and CD spectroscopic methods. In the solid state, this peptide series favors C12-helical conformations, which are backbone-expanded analogues of 310 helices in -peptide sequences. NMR studies of the six- (n = 3) and 16-residue (n = 8) peptides reveal that only two NH protons attached the N-terminus residues Aib(1) and 4(R)Val(2) are solvent-exposed. Sequential NiH-Ni+1H NOEs characteristic of local helical conformations are also observed at the residues. IR studies establish that chain extension leads to a large enhancement in the intensities of the hydrogen-bonded NH stretching bands (3343-3280 cm-1), which suggest elongation of intramolecularly hydrogen-bonded structures. The development of C12-helical structures upon lengthening of the sequence is supported by the NMR and IR observations. The CD spectra of the ()n peptides reveal a negative maximum at ca. 206 nm and a positive maximum at ca. 192 nm, spectral feature that are distinct from those of 310 helices in -peptides.