947 resultados para Quasi-likelihood estimator
Resumo:
The paper considers meta-analysis of diagnostic studies that use a continuous Score for classification of study participants into healthy, or diseased groups. Classification is often done on the basis of a threshold or cut-off value, which might vary between Studies. Consequently, conventional meta-analysis methodology focusing solely on separate analysis of sensitivity and specificity might he confounded by a potentially unknown variation of the cut-off Value. To cope with this phenomena it is suggested to use, instead an overall estimate of the misclassification error previously suggested and used as Youden's index and; furthermore, it is argued that this index is less prone to between-study variation of cut-off values. A simple Mantel-Haenszel estimator as a summary measure of the overall misclassification error is suggested, which adjusts for a potential study effect. The measure of the misclassification error based on Youden's index is advantageous in that it easily allows an extension to a likelihood approach, which is then able to cope with unobserved heterogeneity via a nonparametric mixture model. All methods are illustrated at hand of an example on a diagnostic meta-analysis on duplex doppler ultrasound, with angiography as the standard for stroke prevention.
Resumo:
The article considers screening human populations with two screening tests. If any of the two tests is positive, then full evaluation of the disease status is undertaken; however, if both diagnostic tests are negative, then disease status remains unknown. This procedure leads to a data constellation in which, for each disease status, the 2 x 2 table associated with the two diagnostic tests used in screening has exactly one empty, unknown cell. To estimate the unobserved cell counts, previous approaches assume independence of the two diagnostic tests and use specific models, including the special mixture model of Walter or unconstrained capture-recapture estimates. Often, as is also demonstrated in this article by means of a simple test, the independence of the two screening tests is not supported by the data. Two new estimators are suggested that allow associations of the screening test, although the form of association must be assumed to be homogeneous over disease status. These estimators are modifications of the simple capture-recapture estimator and easy to construct. The estimators are investigated for several screening studies with fully evaluated disease status in which the superior behavior of the new estimators compared to the previous conventional ones can be shown. Finally, the performance of the new estimators is compared with maximum likelihood estimators, which are more difficult to obtain in these models. The results indicate the loss of efficiency as minor.
Resumo:
Estimation of population size with missing zero-class is an important problem that is encountered in epidemiological assessment studies. Fitting a Poisson model to the observed data by the method of maximum likelihood and estimation of the population size based on this fit is an approach that has been widely used for this purpose. In practice, however, the Poisson assumption is seldom satisfied. Zelterman (1988) has proposed a robust estimator for unclustered data that works well in a wide class of distributions applicable for count data. In the work presented here, we extend this estimator to clustered data. The estimator requires fitting a zero-truncated homogeneous Poisson model by maximum likelihood and thereby using a Horvitz-Thompson estimator of population size. This was found to work well, when the data follow the hypothesized homogeneous Poisson model. However, when the true distribution deviates from the hypothesized model, the population size was found to be underestimated. In the search of a more robust estimator, we focused on three models that use all clusters with exactly one case, those clusters with exactly two cases and those with exactly three cases to estimate the probability of the zero-class and thereby use data collected on all the clusters in the Horvitz-Thompson estimator of population size. Loss in efficiency associated with gain in robustness was examined based on a simulation study. As a trade-off between gain in robustness and loss in efficiency, the model that uses data collected on clusters with at most three cases to estimate the probability of the zero-class was found to be preferred in general. In applications, we recommend obtaining estimates from all three models and making a choice considering the estimates from the three models, robustness and the loss in efficiency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
This paper considers the problem of estimation when one of a number of populations, assumed normal with known common variance, is selected on the basis of it having the largest observed mean. Conditional on selection of the population, the observed mean is a biased estimate of the true mean. This problem arises in the analysis of clinical trials in which selection is made between a number of experimental treatments that are compared with each other either with or without an additional control treatment. Attempts to obtain approximately unbiased estimates in this setting have been proposed by Shen [2001. An improved method of evaluating drug effect in a multiple dose clinical trial. Statist. Medicine 20, 1913–1929] and Stallard and Todd [2005. Point estimates and confidence regions for sequential trials involving selection. J. Statist. Plann. Inference 135, 402–419]. This paper explores the problem in the simple setting in which two experimental treatments are compared in a single analysis. It is shown that in this case the estimate of Stallard and Todd is the maximum-likelihood estimate (m.l.e.), and this is compared with the estimate proposed by Shen. In particular, it is shown that the m.l.e. has infinite expectation whatever the true value of the mean being estimated. We show that there is no conditionally unbiased estimator, and propose a new family of approximately conditionally unbiased estimators, comparing these with the estimators suggested by Shen.
Resumo:
Stephens and Donnelly have introduced a simple yet powerful importance sampling scheme for computing the likelihood in population genetic models. Fundamental to the method is an approximation to the conditional probability of the allelic type of an additional gene, given those currently in the sample. As noted by Li and Stephens, the product of these conditional probabilities for a sequence of draws that gives the frequency of allelic types in a sample is an approximation to the likelihood, and can be used directly in inference. The aim of this note is to demonstrate the high level of accuracy of "product of approximate conditionals" (PAC) likelihood when used with microsatellite data. Results obtained on simulated microsatellite data show that this strategy leads to a negligible bias over a wide range of the scaled mutation parameter theta. Furthermore, the sampling variance of likelihood estimates as well as the computation time are lower than that obtained with importance sampling on the whole range of theta. It follows that this approach represents an efficient substitute to IS algorithms in computer intensive (e.g. MCMC) inference methods in population genetics. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Microsatellites are widely used in genetic analyses, many of which require reliable estimates of microsatellite mutation rates, yet the factors determining mutation rates are uncertain. The most straightforward and conclusive method by which to study mutation is direct observation of allele transmissions in parent-child pairs, and studies of this type suggest a positive, possibly exponential, relationship between mutation rate and allele size, together with a bias toward length increase. Except for microsatellites on the Y chromosome, however, previous analyses have not made full use of available data and may have introduced bias: mutations have been identified only where child genotypes could not be generated by transmission from parents' genotypes, so that the probability that a mutation is detected depends on the distribution of allele lengths and varies with allele length. We introduce a likelihood-based approach that has two key advantages over existing methods. First, we can make formal comparisons between competing models of microsatellite evolution; second, we obtain asymptotically unbiased and efficient parameter estimates. Application to data composed of 118,866 parent-offspring transmissions of AC microsatellites supports the hypothesis that mutation rate increases exponentially with microsatellite length, with a suggestion that contractions become more likely than expansions as length increases. This would lead to a stationary distribution for allele length maintained by mutational balance. There is no evidence that contractions and expansions differ in their step size distributions.
Resumo:
A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.
Resumo:
This paper is directed to the advanced parallel Quasi Monte Carlo (QMC) methods for realistic image synthesis. We propose and consider a new QMC approach for solving the rendering equation with uniform separation. First, we apply the symmetry property for uniform separation of the hemispherical integration domain into 24 equal sub-domains of solid angles, subtended by orthogonal spherical triangles with fixed vertices and computable parameters. Uniform separation allows to apply parallel sampling scheme for numerical integration. Finally, we apply the stratified QMC integration method for solving the rendering equation. The superiority our QMC approach is proved.
Resumo:
This correspondence introduces a new orthogonal forward regression (OFR) model identification algorithm using D-optimality for model structure selection and is based on an M-estimators of parameter estimates. M-estimator is a classical robust parameter estimation technique to tackle bad data conditions such as outliers. Computationally, The M-estimator can be derived using an iterative reweighted least squares (IRLS) algorithm. D-optimality is a model structure robustness criterion in experimental design to tackle ill-conditioning in model Structure. The orthogonal forward regression (OFR), often based on the modified Gram-Schmidt procedure, is an efficient method incorporating structure selection and parameter estimation simultaneously. The basic idea of the proposed approach is to incorporate an IRLS inner loop into the modified Gram-Schmidt procedure. In this manner, the OFR algorithm for parsimonious model structure determination is extended to bad data conditions with improved performance via the derivation of parameter M-estimators with inherent robustness to outliers. Numerical examples are included to demonstrate the effectiveness of the proposed algorithm.
Resumo:
Most research on Distributed Space-Time Block Coding (D-STBC) has so far focused on the case of 2 relay nodes and assumed that the relay nodes are perfectly synchronised at the symbol level. This paper applies STBC to 4-relaynode systems under quasi-synchronisation and derives a new detector based on parallel interference cancellation, which proves to be very effective in suppressing the impact of imperfect synchronisation.
Resumo:
Estimation of a population size by means of capture-recapture techniques is an important problem occurring in many areas of life and social sciences. We consider the frequencies of frequencies situation, where a count variable is used to summarize how often a unit has been identified in the target population of interest. The distribution of this count variable is zero-truncated since zero identifications do not occur in the sample. As an application we consider the surveillance of scrapie in Great Britain. In this case study holdings with scrapie that are not identified (zero counts) do not enter the surveillance database. The count variable of interest is the number of scrapie cases per holding. For count distributions a common model is the Poisson distribution and, to adjust for potential heterogeneity, a discrete mixture of Poisson distributions is used. Mixtures of Poissons usually provide an excellent fit as will be demonstrated in the application of interest. However, as it has been recently demonstrated, mixtures also suffer under the so-called boundary problem, resulting in overestimation of population size. It is suggested here to select the mixture model on the basis of the Bayesian Information Criterion. This strategy is further refined by employing a bagging procedure leading to a series of estimates of population size. Using the median of this series, highly influential size estimates are avoided. In limited simulation studies it is shown that the procedure leads to estimates with remarkable small bias.