922 resultados para Quantum dot
Resumo:
We propose a new kind of quantum dot (QD) materials for the implementation of the intermediate band solar cell (IBSC) [1]. The materials are formed by lead salt QDs of the family IV-VI (PbTe, PbSe or PbS) embedded in a semiconductor of the family II-VI (Cd1-xMgxTe, CdxZn1-xTe, and CdS1-xSex or ZnSe1-xTex, respectively). These QDs are not nucleated due to lattice mismatch, as it is the case of the InAs/GaAs QD material system grown by the Stranski-Krastanov (S-K) mode. In these materials, the QDs precipitate due to the difference in lattice type: the QD lead salt material crystallizes in the rocksalt structure, while the II-VI host material has the zincblende structure [2]. Therefore, it is possible to use lattice-matched QD/host combinations, avoiding all the strain-related problems found in previous QD-IBSC developments. In this paper we discuss the properties of the lead salt QD materials and propose that they are appropriate to overcome the fundamental drawbacks of present III-V-based QD-IBSC prototypes. We also calculate the band diagram for some examples of IV-VI/II-VI QD materials. The detailed balance efficiency limit of QD-IBSCs based on the studied materials is found to be over 60% under maximum concentration.
Resumo:
An equivalent circuit model is applied in order to describe the operation characteristics of quantum dot intermediate band solar cells (QD-IBSCs), which accounts for the recombination paths of the intermediate band (IB) through conduction band (CB), the valence band (VB) through IB, and the VB-CB transition. In this work, fitting of the measured dark J-V curves for QD-IBSCs (QD region being non-doped or direct Si-doped to n-type) and a reference GaAs p-i-n solar cell (no QDs) were carried out using this model in order to extract the diode parameters. The simulation was then performed using the extracted diode parameters to evaluate solar cell characteristics under concentration. In the case of QDSC with Si-doped (hence partially-filled) QDs, a fast recovery of the open-circuit voltage (Voc) was observed in a range of low concentration due to the IB effect. Further, at around 100X concentration, Si-doped QDSC could outperform the reference GaAs p-i-n solar cell if the current source of IB current source were sixteen times to about 10mA/cm2 compared to our present cell.
Resumo:
We present a study of the optical properties of GaN/AlN and InGaN/GaN quantum dot (QD) superlattices grown via plasma-assisted molecular-beam epitaxy, as compared to their quantum well (QW) counterparts. The three-dimensional/two-dimensional nature of the structures has been verified using atomic force microscopy and transmission electron microscopy. The QD superlattices present higher internal quantum efficiency as compared to the respective QWs as a result of the three-dimensional carrier localization in the islands. In the QW samples, photoluminescence (PL) measurements point out a certain degree of carrier localization due to structural defects or thickness fluctuations, which is more pronounced in InGaN/GaN QWs due to alloy inhomogeneity. In the case of the QD stacks, carrier localization on potential fluctuations with a spatial extension smaller than the QD size is observed only for the InGaN QD-sample with the highest In content (peak emission around 2.76 eV). These results confirm the efficiency of the QD three-dimensional confinement in circumventing the potential fluctuations related to structural defects or alloy inhomogeneity. PL excitation measurements demonstrate efficient carrier transfer from the wetting layer to the QDs in the GaN/AlN system, even for low QD densities (~1010 cm-3). In the case of InGaN/GaN QDs, transport losses in the GaN barriers cannot be discarded, but an upper limit to these losses of 15% is deduced from PL measurements as a function of the excitation wavelength.
Resumo:
The intermediate band solar cell [1] has been proposed as a concept able to substantially enhance the efficiency limit of an ordinary single junction solar cell. If a band permitted for electrons is inserted within the forbidden band of a semiconductor then a novel path for photo generation is open: electron hole pairs may be formed by the successive absorption of two sub band gap photons using the intermediate band (IB) as a stepping stone. While the increase of the photovoltaic (PV) current is not a big achievement —it suffices to reduce the band gap— the achievement of this extra current at high voltage is the key of the IB concept. In ordinary cells the voltage is limited by the band gap so that reducing it would also reduce the band gap. In the intermediate band solar cell the high voltage is produced when the IB is permitted to have a Quasi Fermi Level (QFL) different from those of the Conduction Band (CB) and the Valence Band (VB). For it the cell must be properly isolated from the external contacts, which is achieved by putting the IB material between two n- and p-type ordinary semiconductors [2]. Efficiency thermodynamic limit of 63% is obtained for the IB solar cell1 vs. the 40% obtained [3] for ordinary single junction solar cells. Detailed information about the IB solar cells can be found elsewhere [4].
Resumo:
In this paper, a model for intermediate band solar cells is built based on the generally understood physical concepts ruling semiconductor device operation, with special emphasis on the behavior at low temperature. The model is compared to JL-VOC measurements at concentrations up to about 1000 suns and at temperatures down to 20 K, as well as measurements of the radiative recombination obtained from electroluminescence. The agreement is reasonable. It is found that the main reason for the reduction of open circuit voltage is an operational reduction of the bandgap, but this effect disappears at high concentrations or at low temperatures.
Resumo:
In this paper, we present calculations of the absorption coefficient for transitions between the bound states of quantum dots grown within a semiconductor and the extended states of the conduction band. For completeness, transitions among bound states are also presented. In the separation of variables, single band k·p model is used in which most elements may be expressed analytically. The analytical formulae are collected in the appendix of this paper. It is concluded that the transitions are strong enough to provide a quick path to the conduction band for electrons pumped from the valence to the intermediate band
Resumo:
The effect of quantum dot (QD) size on the performance of quantum dot intermediate band solar cells is investigated. A numerical model is used to calculate the bound state energy levels and the absorption coefficient of transitions from the ground state to all other states in the conduction band. Comparing with the current state of the art, strong absorption enhancements are found for smaller quantum dots, as well as a better positioning of the energy levels, which is expected to reduce thermal carrier escape. It is concluded that reducing the quantum dot size can increase sub-bandgap photocurrent and improve voltage preservation.
Resumo:
Implementation of a high-efficiency quantum dot intermediate-band solar cell (QD-IBSC) must accompany a sufficient photocurrent generation via IB states. The demonstration of a QD-IBSC is presently undergoing two stages. The first is to develop a technology to fabricate high-density QD stacks or a superlattice of low defect density placed within the active region of a p-i-n SC, and the second is to realize half-filled IB states to maximize the photocurrent generation by two-step absorption of sub-bandgap photons. For this, we have investigated the effect of light concentration on the characteristics of QDSCs comprised of multi-layer stacks of self-organized InAs/GaNAs QDs grown with and without impurity doping in molecular beam epitaxy.
Resumo:
In the last decade several prototypes of intermediate band solar cells (IBSCs) have been manufactured. So far, most of these prototypes have been based on InAs/GaAs quantum dots (QDs) in order to implement the IB material. The key operation principles of the IB theory are two photon sub-bandgap (SBG) photocurrent, and output voltage preservation, and both have been experimentally demonstrated at low temperature. At room temperature (RT), however, thermal escape/relaxation between the conduction band (CB) and the IB prevents voltage preservation. To improve this situation, we have produced and characterized the first reported InAs/AlGaAs QD-based IBSCs. For an Al content of 25% in the host material, we have measured an activation energy of 361 meV for the thermal carrier escape. This energy is about 250 meV higher than the energies found in the literature for InAs/GaAs QD, and almost 140 meV higher than the activation energy obtained in our previous InAs/GaAs QD-IBSC prototypes including a specifically designed QD capping layer. This high value is responsible for the suppression of the SBG quantum efficiency under monochromatic illumination at around 220 K. We suggest that, if the energy split between the CB and the IB is large enough, activation energies as high as to suppress thermal carrier escape at room temperature (RT) can be achieved. In this respect, the InAs/AlGaAs system offers new possibilities to overcome some of the problems encountered in InAs/GaAs and opens the path for QD-IBSC devices capable of achieving high efficiency at RT.
Resumo:
A numerical study is presented of the sub-bandgap interband photon absorption in quantum dot intermediate band solar cells. Absorption coefficients and photocurrent densities are calculated for the valence band to intermediate band transitions using a four-band k · p method. It is found that reducing the quantum dot width in the plane perpendicular to the growth direction increases the photocurrent from the valence band to the intermediate-band ground state if the fractional surface coverage of quantum dots is conserved. This provides a path to increase the sub-bandgap photocurrent in intermediate band solar cells.
Resumo:
An attractive but challenging technology for high efficiency solar energy conversion is the intermediate band solar cell (IBSC), whose theoretical efficiency limit is 63%, yet which has so far failed to yield high efficiencies in practice. The most advanced IBSC technology is that based on quantum dots (QDs): the QD-IBSC. In this paper, k·p calculations of photon absorption in the QDs are combined with a multi-level detailed balance model. The model has been used to reproduce the measured quantum efficiency of a real QD-IBSC and its temperature dependence. This allows the analysis of individual sub-bandgap transition currents, which has as yet not been possible experimentally, yielding a deeper understanding of the failure of current QD-IBSCs. Based on the agreement with experimental data, the model is believed to be realistic enough to evaluate future QD-IBSC proposals.
Resumo:
The effective mass Schrodinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band which are similar to those originated in quantum wires and quantum wells coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.
Resumo:
Several attempts have been carried out to manufacture intermediate band solar cells (IBSC) by means of quantum dot (QD) superlattices. This novel photovoltaic concept allows the collection of a wider range of the sunlight spectrum in order to provide higher cell photocurrent while maintaining the open-circuit voltage (VOC) of the cell. In this work, we analyze InAs/GaAsN QD-IBSCs. In these cells, the dilute nitrogen in the barrier plays an important role for the strain-balance (SB) of the QD layer region that would otherwise create dislocations under the effect of the accumulated strain. The introduction of GaAsN SB layers allows increasing the light absorption in the QD region by multi-stacking more than 100 QD layers. The photo-generated current density (JL) versus VOC was measured under varied concentrated light intensity and temperature. We found that the VOC of the cell at 20 K is limited by the bandgap of the GaAsN barriers, which has important consequences regarding IBSC bandgap engineering that are also discussed in this work.
Resumo:
In recent years, all the operating principles of intermediate band behaviour have been demonstrated in InAs/GaAs quantum dot (QD) solar cells. Having passed this hurdle, a new stage of research is underway, whose goal is to deliver QD solar cells with efficiencies above those of state-of-the-art single-gap devices. In this work, we demonstrate that this is possible, using the present InAs/GaAs QD system, if the QDs are made to be radiatively dominated, and if absorption enhancements are achieved by a combination of increasing the number of QDs and light trapping. A quantitative prediction is also made of the absorption enhancements required, suggesting that a 30 fold increase in the number of QDs and a light trapping enhancement of 10 are sufficient. Finally, insight is given into the relative merits of absorption enhancement via increasing QD numbers and via light trapping.
Resumo:
It has been proposed that the use of self-assembled quantum dot (QD) arrays can break the Shockley-Queisser efficiency limit by extending the absorption of solar cells into the low-energy photon range while preserving their output voltage. This would be possible if the infrared photons are absorbed in the two sub-bandgap QD transitions simultaneously and the energy of two photons is added up to produce one single electron-hole pair, as described by the intermediate band model. Here, we present an InAs/Al 0.25Ga 0.75As QD solar cell that exhibits such electrical up-conversion of low-energy photons. When the device is monochromatically illuminated with 1.32 eV photons, open-circuit voltages as high as 1.58 V are measured (for a total gap of 1.8 eV). Moreover, the photocurrent produced by illumination with photons exciting the valence band to intermediate band (VB-IB) and the intermediate band to conduction band (IB-CB) transitions can be both spectrally resolved. The first corresponds to the QD inter-band transition and is observable for photons of energy mayor que 1 eV, and the later corresponds to the QD intra-band transition and peaks around 0.5 eV. The voltage up-conversion process reported here for the first time is the key to the use of the low-energy end of the solar spectrum to increase the conversion efficiency, and not only the photocurrent, of single-junction photovoltaic devices. In spite of the low absorption threshold measured in our devices - 0.25 eV - we report open-circuit voltages at room temperature as high as 1.12 V under concentrated broadband illumination.