978 resultados para QUANTUM-MECHANICS
Resumo:
Foi proposta uma experiência na qual seria possível produzir um emaranhamento quântico de feixes de fótons com diferentes frequências, movendo-se em uma mesma direção, controlado por meio de um campo magnético externo. Nessa experiência, a interação entre o campo magnético e fótons é realizada por intermédio de elétrons, que interagem tanto com os fótons quanto com o campo magnético externo. Foi desenvolvida uma teoria que descreve processos físicos. Derivamos medidas de emaranhamento de informação e de Schmidt para um sistema geral de dois qubits e a medida residual para um sistema geral de três qubits. Usando a informação obtida da análise dos sistemas de dois e de três quase-fótons, calculamos medidas de emaranhamento. Criamos um programa para cálculo numérico, nesses casos, através do qual construímos gráficos de dependência das medidas de emaranhamentos em feixes de dois e de três fótons. Os resultados obtidos nos permitem ver como a medida de emaranhamento depende dos parâmetros, que caracterizam o sistema em questão. Por exemplo, se ambas as polarizações dos fótons coincidem, então, nenhum emaranhamento ocorre. O emaranhamento acontece apenas se as polarizações do fóton forem opostas.
Resumo:
"Issued April 15, 1948."
Resumo:
"CODEN: XNBSAV."
Resumo:
Includes indexes.
Resumo:
v. 1. Molecular quantum mechanics and molecular electronic spectroscopy: early workers.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A central feature in the Hilbert space formulation of classical mechanics is the quantisation of classical Lionville densities, leading to what may be termed Groenewold operators. We investigate the spectra of the Groenewold operators that correspond to Gaussian and to certain uniform Lionville densities. We show that when the classical coordinate-momentum uncertainty product falls below Heisenberg's limit, the Groenewold operators in the Gaussian case develop negative eigenvalues and eigenvalues larger than 1. However, in the uniform case, negative eigenvalues are shown to persist for arbitrarily large values of the classical uncertainty product.
Resumo:
Measuring the polarization of a single photon typically results in its destruction. We propose, demonstrate, and completely characterize a quantum nondemolition (QND) scheme for realizing such a measurement nondestructively. This scheme uses only linear optics and photodetection of ancillary modes to induce a strong nonlinearity at the single-photon level, nondeterministically. We vary this QND measurement continuously into the weak regime and use it to perform a nondestructive test of complementarity in quantum mechanics. Our scheme realizes the most advanced general measurement of a qubit to date: it is nondestructive, can be made in any basis, and with arbitrary strength.
Resumo:
The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal.
Resumo:
We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It nondeterministically distills coherent-state superpositions (CSS's) with large amplitudes out of CSS's with small amplitudes using inefficient photon detection. The small CSS's required to produce CSS's with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single-photon sources and boosts negativity of Wigner functions of quantum states.
Resumo:
We investigate the nonclassicality of a photon-subtracted Gaussian field, which was produced in a recent experiment, using negativity of the Wigner function and the nonexistence of well-behaved positive P function. We obtain the condition to see negativity of the Wigner function for the case including the mixed Gaussian incoming field, the threshold photodetection and the inefficient homodyne measurement. We show how similar the photon-subtracted state is to a superposition of coherent states.
Resumo:
Wigner functions play a central role in the phase space formulation of quantum mechanics. Although closely related to classical Liouville densities, Wigner functions are not positive definite and may take negative values on subregions of phase space. We investigate the accumulation of these negative values by studying bounds on the integral of an arbitrary Wigner function over noncompact subregions of the phase plane with hyperbolic boundaries. We show using symmetry techniques that this problem reduces to computing the bounds on the spectrum associated with an exactly solvable eigenvalue problem and that the bounds differ from those on classical Liouville distributions. In particular, we show that the total "quasiprobability" on such a region can be greater than 1 or less than zero. (C) 2005 American Institute of Physics.
Resumo:
In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The ene:rgy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points.
Resumo:
Highly localized positive-energy states of the free Dirac electron are constructed and shown to evolve in a simple way under the action of Dirac's equation. When the initial uncertainty in position is small on the scale of the Compton wavelength, there is an associated uncertainty in the mean energy that is large compared with the rest mass of the electron. However, this does not lead to any breakdown of the one-particle description, associated with the possibility of pair-production, but rather leads to a rapid expansion of the probability density outwards from the point of localization, at speeds close to the speed of light.
Resumo:
Arguably the deepest fact known about the von Neumann entropy, the strong subadditivity inequality is a potent hammer in the quantum information theorist's toolkit. This short tutorial describes a simple proof of strong subadditivity due to Petz [Rep. on Math. Phys. 23 (1), 57-65 (1986)]. It assumes only knowledge of elementary linear algebra and quantum mechanics.