989 resultados para QUANTUM STOCHASTIC RESONANCE
Resumo:
Stochastic models for competing clonotypes of T cells by multivariate, continuous-time, discrete state, Markov processes have been proposed in the literature by Stirk, Molina-París and van den Berg (2008). A stochastic modelling framework is important because of rare events associated with small populations of some critical cell types. Usually, computational methods for these problems employ a trajectory-based approach, based on Monte Carlo simulation. This is partly because the complementary, probability density function (PDF) approaches can be expensive but here we describe some efficient PDF approaches by directly solving the governing equations, known as the Master Equation. These computations are made very efficient through an approximation of the state space by the Finite State Projection and through the use of Krylov subspace methods when evolving the matrix exponential. These computational methods allow us to explore the evolution of the PDFs associated with these stochastic models, and bimodal distributions arise in some parameter regimes. Time-dependent propensities naturally arise in immunological processes due to, for example, age-dependent effects. Incorporating time-dependent propensities into the framework of the Master Equation significantly complicates the corresponding computational methods but here we describe an efficient approach via Magnus formulas. Although this contribution focuses on the example of competing clonotypes, the general principles are relevant to multivariate Markov processes and provide fundamental techniques for computational immunology.
Resumo:
One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.
Resumo:
We consider a stochastic regularization method for solving the backward Cauchy problem in Banach spaces. An order of convergence is obtained on sourcewise representative elements.
Resumo:
Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.
Resumo:
Recently, an analysis of the response curve of the vascular endothelial growth factor (VEGF) receptor and its application to cancer therapy was described in [T. Alarcón, and K. Page, J. R. Soc. Lond. Interface 4, 283–304 (2007)]. The analysis is significantly extended here by demonstrating that an alternative computational strategy, namely the Krylov FSP algorithm for the direct solution of the chemical master equation, is feasible for the study of the receptor model. The new method allows us to further investigate the hypothesis of symmetry in the stochastic fluctuations of the response. Also, by augmenting the original model with a single reversible reaction we formulate a plausible mechanism capable of realizing a bimodal response, which is reported experimentally but which is not exhibited by the original model. The significance of these findings for mechanisms of tumour resistance to antiangiogenic therapy is discussed.
Resumo:
Quantum dot - plasmon waveguide systems are of interest for the active control of plasmon propagation, and consequently, the development of active nanophotonic devices such as nano-sized optical transistors. This paper is concerned with how varying aspect ratio of the waveguide crosssection affects the quantum dot - plasmon coupling. We compare a stripe waveguide with an equivalent nanowire, illustrating that both waveguides have a similar coupling strength to a nearby quantum dot for small waveguide cross-section, thereby indicating that stripe lithographic waveguides have strong potential use in quantum dot –plasmon waveguide systems. We also demonstrate that changing the aspect ratio of both stripe and wire waveguides can increase the spontaneous emission rate of the quantum dot into the plasmon mode, by up to a factor of five. The results of this paper will contribute to the optimisation of quantum dot - plasmon waveguide systems and help pave the way for the development of active nanophotonics devices.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes
Resumo:
This paper gives a modification of a class of stochastic Runge–Kutta methods proposed in a paper by Komori (2007). The slight modification can reduce the computational costs of the methods significantly.
Resumo:
Recent studies have shown that small genetic regulatory networks (GRNs) can be evolved in silico displaying certain dynamics in the underlying mathematical model. It is expected that evolutionary approaches can help to gain a better understanding of biological design principles and assist in the engineering of genetic networks. To take the stochastic nature of GRNs into account, our evolutionary approach models GRNs as biochemical reaction networks based on simple enzyme kinetics and simulates them by using Gillespie’s stochastic simulation algorithm (SSA). We have already demonstrated the relevance of considering intrinsic stochasticity by evolving GRNs that show oscillatory dynamics in the SSA but not in the ODE regime. Here, we present and discuss first results in the evolution of GRNs performing as stochastic switches.
Resumo:
This position paper provides an overview of work conducted and an outlook of future directions within the field of Information Retrieval (IR) that aims to develop novel models, methods and frameworks inspired by Quantum Theory (QT).
Resumo:
STUDY OBJECTIVES: To determine whether cerebral metabolite changes may underlie abnormalities of neurocognitive function and respiratory control in OSA. DESIGN: Observational, before and after CPAP treatment. SETTING: Two tertiary hospital research institutes. PARTICIPANTS: 30 untreated severe OSA patients, and 25 age-matched healthy controls, all males free of comorbidities, and all having had detailed structural brain analysis using voxel-based morphometry (VBM). MEASUREMENTS AND RESULTS: Single voxel bilateral hippocampal and brainstem, and multivoxel frontal metabolite concentrations were measured using magnetic resonance spectroscopy (MRS) in a high resolution (3T) scanner. Subjects also completed a battery of neurocognitive tests. Patients had repeat testing after 6 months of CPAP. There were significant differences at baseline in frontal N-acetylaspartate/choline (NAA/Cho) ratios (patients [mean (SD)] 4.56 [0.41], controls 4.92 [0.44], P = 0.001), and in hippocampal choline/creatine (Cho/Cr) ratios (0.38 [0.04] vs 0.41 [0.04], P = 0.006), (both ANCOVA, with age and premorbid IQ as covariates). No longitudinal changes were seen with treatment (n = 27, paired t tests), however the hippocampal differences were no longer significant at 6 months, and frontal NAA/Cr ratios were now also significantly different (patients 1.55 [0.13] vs control 1.65 [0.18] P = 0.01). No significant correlations were found between spectroscopy results and neurocognitive test results, but significant negative correlations were seen between arousal index and frontal NAA/Cho (r = -0.39, corrected P = 0.033) and between % total sleep time at SpO(2) < 90% and hippocampal Cho/Cr (r = -0.40, corrected P = 0.01). CONCLUSIONS: OSA patients have brain metabolite changes detected by MRS, suggestive of decreased frontal lobe neuronal viability and integrity, and decreased hippocampal membrane turnover. These regions have previously been shown to have no gross structural lesions using VBM. Little change was seen with treatment with CPAP for 6 months. No correlation of metabolite concentrations was seen with results on neurocognitive tests, but there were significant negative correlations with OSA severity as measured by severity of nocturnal hypoxemia. CITATION: O'Donoghue FJ; Wellard RM; Rochford PD; Dawson A; Barnes M; Ruehland WR; Jackson ML; Howard ME; Pierce RJ; Jackson GD. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment.
Resumo:
Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this article will explore concept combinations, and will argue that emergent associations are a result of abductive reasoning within conceptual space, that is, below the symbolic level of cognition. A tensor-based approach is used to model concept combinations allowing such combinations to be formalized as interacting quantum systems. Free association norm data is used to motivate the underlying basis of the conceptual space. It is shown by analogy how some concept combinations may behave like quantum-entangled (non-separable) particles. Two methods of analysis were presented for empirically validating the presence of non-separable concept combinations in human cognition. One method is based on quantum theory and another based on comparing a joint (true theoretic) probability distribution with another distribution based on a separability assumption using a chi-square goodness-of-fit test. Although these methods were inconclusive in relation to an empirical study of bi-ambiguous concept combinations, avenues for further refinement of these methods are identified.
Resumo:
As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.