977 resultados para Proximity detectors.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous applications within the mid- and long-wavelength infrared are driving the search for efficient and cost effective detection technologies in this regime. Theoretical calculations have predicted high performance for InAs/GaSb type-II superlattice structures, which rely on mature growth of III-V semiconductors and offer many levels of freedom in design due to band structure engineering. This work focuses on the fabrication and characterization of type-II superlattice infrared detectors. Standard UV-based photolithography was used combined with chemical wet or dry etching techniques in order to fabricate antinomy-based type-II superlattice infrared detectors. Subsequently, Fourier transform infrared spectroscopy and radiometric techniques were applied for optical characterization in order to obtain a detector's spectrum and response, as well as the overall detectivity in combination with electrical characterization. Temperature dependent electrical characterization was used to extract information about the limiting dark current processes. This work resulted in the first demonstration of an InAs/GaSb type-II superlattice infrared photodetector grown by metalorganic chemical vapor deposition. A peak detectivity of 1.6x10^9 Jones at 78 K was achieved for this device with a 11 micrometer zero cutoff wavelength. Furthermore the interband tunneling detector designed for the mid-wavelength infrared regime was studied. Similar results to those previously published were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most promising concept for low frequency (millihertz to hertz) gravitational wave observatories are laser interferometric detectors in space. It is usually assumed that the noise floor for such a detector is dominated by optical shot noise in the signal readout. For this to be true, a careful balance of mission parameters is crucial to keep all other parasitic disturbances below shot noise. We developed a web application that uses over 30 input parameters and considers many important technical noise sources and noise suppression techniques to derive a realistic position noise budget. It optimizes free parameters automatically and generates a detailed report on all individual noise contributions. Thus one can easily explore the entire parameter space and design a realistic gravitational wave observatory. In this document we describe the different parameters, present all underlying calculations, and compare the final observatory's sensitivity with astrophysical sources of gravitational waves. We use as an example parameters currently assumed to be likely applied to a space mission proposed to be launched in 2034 by the European Space Agency. The web application itself is publicly available on the Internet at http://spacegravity.org/designer. Future versions of the web application will incorporate the frequency dependence of different noise sources and include a more detailed model of the observatory's residual acceleration noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite record-setting performance demonstrated by superconducting Transition Edge Sensors (TESs) and growing utilization of the technology, a theoretical model of the physics governing TES devices superconducting phase transition has proven elusive. Earlier attempts to describe TESs assumed them to be uniform superconductors. Sadleir et al. 2010 shows that TESs are weak links and that the superconducting order parameter strength has significant spatial variation. Measurements are presented of the temperature T and magnetic field B dependence of the critical current Ic measured over 7 orders of magnitude on square Mo/Au bilayers ranging in length from 8 to 290 microns. We find our measurements have a natural explanation in terms of a spatially varying order parameter that is enhanced in proximity to the higher transition temperature superconducting leads (the longitudinal proximity effect) and suppressed in proximity to the added normal metal structures (the lateral inverse proximity effect). These in-plane proximity effects and scaling relations are observed over unprecedentedly long lengths (in excess of 1000 times the mean free path) and explained in terms of a Ginzburg-Landau model. Our low temperature Ic(B) measurements are found to agree with a general derivation of a superconducting strip with an edge or geometric barrier to vortex entry and we also derive two conditions that lead to Ic rectification. At high temperatures the Ic(B) exhibits distinct Josephson effect behavior over long length scales and following functional dependences not previously reported. We also investigate how film stress changes the transition, explain some transition features in terms of a nonequilibrium superconductivity effect, and show that our measurements of the resistive transition are not consistent with a percolating resistor network model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A suicide cluster is defined as a higher number of observed cases occurring in space and/or time than would typically be expected. Previous research has largely focused on identifying clusters of suicides, while there has been comparatively limited research on clusters of suicide attempts. We sought to identify clusters of both types of behaviour, and having done that, identify the factors that distinguish suicide attempts inside a cluster from those that were outside a cluster. METHODS: We used data from Western Australia from 2000 to 2011. We defined suicide attempts as admissions to hospital for deliberate self-harm and suicides as deaths due to deliberate self-harm. Using an analytic strategy that accounted for the repetition of attempted suicide within a cluster, we performed spatial-temporal analysis using Poisson discrete scan statistics to detect clusters of suicide attempts and clusters of suicides. Logistic regression was then used to compare clustered attempts with non-clustered attempts to identify risk factors for an attempt being in a cluster. RESULTS: We detected 350 (1%) suicide attempts occurring within seven spatial-temporal clusters and 12 (0.6%) suicides occurring within two spatial-temporal clusters. Both of the suicide clusters were located within a larger but later suicide attempt cluster. In multivariate analysis, suicide attempts by individuals who lived in areas of low socioeconomic status had higher odds of being in a cluster than those living in areas of high socioeconomic status [odds ratio (OR) = 29.1, 95% confidence interval (CI) = 6.3-135.5]. A one percentage-point increase in the proportion of people who had changed address in the last year was associated with a 60% increase in the odds of the attempt being within a cluster (OR = 1.60, 95% CI = 1.29-1.98) and a one percentage-point increase in the proportion of Indigenous people in the area was associated with a 7% increase in the suicide being within a cluster (OR = 1.07, 95% CI = 1.00-1.13). Age, sex, marital status, employment status, method of harm, remoteness, percentage of people in rented accommodation and percentage of unmarried people were not associated with the odds of being in a suicide attempt cluster. CONCLUSIONS: Early identification of and responding to suicide clusters may reduce the likelihood of subsequent clusters forming. The mechanisms, however, that underlie clusters forming is poorly understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The examination of links between a high degree of encephalisation (i.e., a large brain mass relative to body size) and the capacity of wildlife to inhabit anthropogenic habitats has formed the basis of several recent studies, although typically they have not uncovered any relationship. It, however, remains unclear whether encephalisation is directly related to a species' capacity to develop tolerance to human proximity (i.e., a reduction in response to approaching humans). It is also unknown whether such a relationship is related to the size of specific areas of the brain. Using published data on flight-initiation distance (FID), the distance at which animals flee from an approaching human, we estimate the degree of tolerance of human proximity for 42 bird species by comparing FIDs in urban and rural areas, with relatively high and low exposure to humans, respectively. We used a phylogenetic, comparative approach to analyse the relationship of degree of tolerance, and of FID in urban and rural populations more directly, to relative sizes of whole brains (42 species) and brain components (25 species) for the species, and examine the effect of the year that the bird species was first recorded in an urban area (year of urbanization). We demonstrate an interaction between bird habitat and year of urbanization on FIDs. Urban populations of species that have a longer history of inhabiting urban areas have lower FIDs (i.e., birds that were urbanized earlier are more tolerant), which may suggest local selection for birds with reduced responsiveness to humans in urban areas. The pattern is not seen in rural populations of the same species, providing additional evidence that it is greater exposure to humans that has resulted in this tolerance. While we found that forebrain mass and optic lobe mass are influential positive predictors of FID there was no indication that degree of tolerance itself was related to any brain size metric and hence no support for the idea that urban populations of species with larger brains are better able to habituate to human presence. This suggests that processes other than encephalisation explain the high degree of tolerance evident in urban-dwelling birds.