959 resultados para Protoplanetary disc
Resumo:
AIM To report the finding of extension of the 4th hyper-reflective band and retinal tissue into the optic disc in patients with cavitary optic disc anomalies (CODAs). METHODS In this observational study, 10 patients (18 eyes) with sporadic or autosomal dominant CODA were evaluated with enhanced depth imaging optical coherence tomography (EDI-OCT) and colour fundus images for the presence of 4th hyper-reflective band extension into the optic disc. RESULTS Of 10 CODA patients (18 eyes), five patients (8 eyes) showed a definite 4th hyper-reflective band (presumed retinal pigment epithelium (RPE)) extension into the optic disc. In these five patients (seven eyes), the inner retinal layers also extended with the 4th hyper-reflective band into the optic disc. Best corrected visual acuity ranged from 20/20 to 20/200. In three patients (four eyes), retinal splitting/schisis was present and in two patients (two eyes), the macula was involved. In all cases, the 4th hyper-reflective band extended far beyond the termination of the choroid into the optic disc. The RPE extension was found either temporally or nasally in areas of optic nerve head excavation, most often adjacent to peripapillary pigment. Compared with eyes without RPE extension, eyes with RPE extension were more myopic (mean dioptres -0.9±2.6 vs -8.8±5, p=0.043). CONCLUSIONS The RPE usually stops near the optic nerve border separated by a border tissue. With CODA, extension of this hyper-reflective band and retinal tissue into the disc is possible and best evaluable using EDI-OCT or analogous image modalities. Whether this is a finding specific for CODA, linked to specific gene loci or is also seen in patients with other optic disc abnormalities needs further evaluation.
Resumo:
Mutations in the nubbin (nub) gene have a phenotype consisting of a severe wing size reduction and pattern alterations, such as transformations of distal elements into proximal ones. nub expression is restricted to the wing pouch cells in wing discs since early larval development. These effects are also observed in genetic mosaics where cell proliferation is reduced in all wing blade regions autonomously, and transformation into proximal elements is observed in distal clones. Clones located in the proximal region of the wing blade cause in addition nonautonomous reduction of the whole wing. Cell lineage experiments in a nub mutant background show that clones respect neither the anterior–posterior nor the dorsal–ventral boundary but that the selector genes have been correctly expressed since early larval development. The phenotypes of nub el and nub dpp genetic combinations are synergistic and the overexpression of dpp in clones in nub wings does not result in overproliferation of the surrounding wild-type cells. We discuss the role of nub in the wing’s proximo–distal axis and in the formation of compartment boundaries.