950 resultados para Protein Structure, Quaternary


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Maillard reaction causes changes to protein structure and occurs in foods mainly during thermal treatment. Melanoidins, the final products of the Maillard reaction, may enter the gastrointestinal tract, which is populated by different species of bacteria. In this study, melanoidins were prepared from gluten and glucose. Their effect on the growth of faecal bacteria was determined in culture with genotype and phenotype probes to identify the different species involved. Analysis of peptic and tryptic digests showed that low molecular mass products are formed from the degradation of melanoidins. Results showed a change in the growth of bacteria. This in vitro study demonstrated that melanoidins, prepared from gluten and glucose, affect the growth of the gut microflora.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accumulation of advanced glycation end-products (AGEs) on proteins is associated with the development of diabetic complications. Although the overall extent of modification of protein by AGEs is limited, localization of these modifications at a few critical sites might have a significant effect on protein structure and function. In the present study, we describe the sites of modification of RNase by glyoxal under physiological conditions. Arg(39) and Arg(85), which are closest to the active site of the enzyme, were identified as the primary sites of formation of the glyoxal-derived dihydroxyimidazolidine and hydroimidazolone adducts. Lower amounts of modification were detected at Arg(10), while Arg(33) appeared to be unmodified. We conclude that dihydroxyimidazolidine adducts are the primary products of modification of protein by glyoxal, that Arg(39) and Arg(85) are the primary sites of modification of RNase by glyoxal, and that modification of arginine residues during Maillard reactions of proteins is a highly selective process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The completion of the Human Genome Project has revealed a multitude of potential avenues for the identification of therapeutic targets. Extensive sequence information enables the identification of novel genes but does not facilitate a thorough understanding of how changes in gene expression control the molecular mechanisms underlying the development and regulation of a cell or the progression of disease. Proteomics encompasses the study of proteins expressed by a population of cells, and evaluates changes in protein expression, post-translational modifications, protein interactions, protein structure and splice variants, all of which are imperative for a complete understanding of protein function within the cell. From the outset, proteomics has been used to compare the protein profiles of cells in healthy and diseased states and as such can be used to identify proteins associated with disease development and progression. These candidate proteins might provide novel targets for new therapeutic agents or aid the development of assays for disease biomarkers. This review provides an overview of the current proteomic techniques available and focuses on their application in the search for novel therapeutic targets for the treatment of disease.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of new and newly improved methods for predicting protein structure developed by the Jones–University College London group were used to make predictions for the CASP6 experiment. Structures were predicted with a combination of fold recognition methods (mGenTHREADER, nFOLD, and THREADER) and a substantially enhanced version of FRAGFOLD, our fragment assembly method. Attempts at automatic domain parsing were made using DomPred and DomSSEA, which are based on a secondary structure parsing algorithm and additionally for DomPred, a simple local sequence alignment scoring function. Disorder prediction was carried out using a new SVM-based version of DISOPRED. Attempts were also made at domain docking and “microdomain” folding in order to build complete chain models for some targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the emulsification properties of the native gums and those treated at high pressure (800 MPa) both at their “natural” pH (4.49 and 4.58, respectively) and under “acidic and basic” pH (2.8 and 8.0) conditions. The emulsification behaviour of KLTA gum was found to be superior to that of the GCA gum. High pressure and pH treatment changed the emulsification properties of both gums. The acidic amino acids in gum arabic were shown to play an important role in their emulsification behaviour, and mechanisms of emulsification for the two gums were suggested to be different. The highly “branched” nature of the carbohydrate in GCA gum was also thought to be responsible for the “spreading” of droplet size distributions observed. Coomassie brilliant blue binding was used to indicate conformational changes in protein structure and Ellman’s assay was used to estimate any changes in levels of free thiols present.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein–ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein–ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein–ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arginase (L-arginine amidinohydrolase, E.C. 3.5.3.1) is a metalloenzyme that catalyses the hydrolysis Of L-arginine to L-ornithine and urea. In Leishmania spp., the biological role of the enzyme may be involved in modulating NO production upon macrophage infection. Previously, we cloned and characterized the arginase gene from Leishmania (Leishmania) amazonensis. In the present work, we successfully expressed the recombinant enzyme in E. coli and performed biochemical and biophysical characterization of both the native and recombinant enzymes. We obtained K-M and V-max. values of 23.9(+/- 0.96) mM and 192.3 mu mol/min mg protein (+/- 14.3), respectively, for the native enzyme. For the recombinant counterpart, K-M was 21.5(+/- 0.90) mM and V-max was 144.9(+/- 8.9) mu mol/min mg. Antibody against the recombinant protein confirmed a glycosomal cellular localization of the enzyme in promastigotes. Data from light scattering and small angle X-ray scattering showed that a trimeric state is the active form of the protein. We determined empirically that a manganese wash at room temperature is the best condition to purify active enzyme. The interaction of the recombinant protein with the immobilized nickel also allowed us to confirm the structural disposition of histidine at positions 3 and 324. The determined structural parameters provide substantial data to facilitate the search for selective inhibitors of parasitic sources of arginase, which could subsequently point to a candidate for leishmaniasis therapy. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper explores the structural continuum in CATH and the extent to which superfamilies adopt distinct folds. Although most superfamilies are structurally conserved, in some of the most highly populated superfamilies (4% of all superfamilies) there is considerable structural divergence. While relatives share a similar fold in the evolutionary conserved core, diverse elaborations to this core can result in significant differences in the global structures. Applying similar protocols to examine the extent to which structural overlaps occur between different fold groups, it appears this effect is confined to just a few architectures and is largely due to small, recurring super-secondary motifs (e.g., alpha beta-motifs, alpha-hairpins). Although 24% of superfamilies overlap with superfamilies having different folds, only 14% of nonredundant structures in CATH are involved in overlaps. Nevertheless, the existence of these overlaps suggests that, in some regions of structure space, the fold universe should be seen as more continuous.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unveiling the mechanisms of energy relaxation in biomolecules is key to our understanding of protein stability, allostery, intramolecular signaling, and long-lasting quantum coherence phenomena at ambient temperatures. Yet, the relationship between the pathways of energy transfer and the functional role of the residues involved remains largely unknown. Here, we develop a simulation method of mapping out residues that are highly efficient in relaxing an initially localized excess vibrational energy and perform site-directed mutagenesis functional assays to assess the relevance of these residues to protein function. We use the ligand binding domains of thyroid hormone receptor (TR) subtypes as a test case and find that conserved arginines, which are critical to TR transactivation function, are the most effective heat diffusers across the protein structure. These results suggest a hitherto unsuspected connection between a residue`s ability to mediate intramolecular vibrational energy redistribution and its functional relevance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most puzzling phenomena of abnormal renal physiology is the occurrence of the nephrotic syndrome. The syndrome has been defined by a collection of clinical and pathological symptoms, but there is no correlation between the clinical and pathological symptoms nor is the etiology of the syndrome known. Proteinuria is probably the most distinguishing feature in the nephrotic syndrome, and there are two possible explanations for its occurrence: (1) the excessive amounts of protein found in nephrotic urine could be due to an increased basement membrane permeability in the glomerulus of the kidney or (2) dysproteinemia. An attempt has been made to evaluate the theory of dysproteinemia in connection with the syndrome. The albumin fractions of nephrotic urine have been studied for their amino acid composition by separating them from the urine by paper electrophoresis, hydrolyzing them, and identifying the amino acids present by two-dimensional chromatography. There seem to be no variations in the qualitative makeup of nephrotic albumin from that of normal albumin, but the literature shows that there are some slight variations in the quantitative amino acid composition of nephrotic albumin compared with normal albumin. More extensive and highly developed experimentation along the lines of protein structure and composition must be done before it can conclusively be stated that dysproteinemia is of importance in the nephrotic syndrome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mastoparans are tetradecapeptides found to be the major component of vespid venoms. These peptides present a wide spectrum of biological activities, such as mast cell degranulation, hemolytic activity and also reveals antimicrobial activity. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized. At room temperature these crystals diffracted to 2.8 Angstrom resolution. However, upon cooling to cryogenic temperature around 85 K, the original resolution limit could be improved to 2.0 Angstrom. Crystals were determined to belong to the space group P3(1) (P3(2)). This is the first mastoparan to be crystallized and it will provide further insights in the conformational significance of mastoparan toxins, with respect to their potency and activity in G protein regulation. (C) 3001 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No presente estudo procedeu-se ao isolamento e caracterização da fração globulina majoritária (11 S) de grão-de-bico, var. IAC-Marrocos. A globulina majoritária extraída foi isolada por cromatografia de filtração em gel e de troca-iônica mostrando apenas uma banda de proteína na eletroforese em gel de poliacrilamida. A globulina majoritária, após passagem em coluna de Sephadex, revelou duas bandas protéicas de 55 e 52,5kDa e três bandas menores em gel de poliacrilamida dodecilsulfato de sódio. Na presença de 2-mercaptoetanol 6 polipeptídios na faixa de 18 a 42kDa foram revelados na eletroforese. A globulina isolada foi submetida à ação da tripsina e quimotripsina onde a forma nativa mostrou-se resistente à ação enzimática enquanto o aquecimento (96 e 121°C/15min) não foi suficiente para aumentar a susceptibilidade à hidrólise, significativamente. Adição de NaCl 0,3M levou a um aumento da estabilidade estrutural com menor susceptibilidade à digestão proteolítica, fato em parte perdido com o aquecimento. As hidrólises foram acompanhadas por eletroforese em gel de poliacrilamida dodecilsulfato de sódio.