996 resultados para Protéine phosphatase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tartrate-resistant acid phosphatase (TRAP) is present in multiple tissues, including kidney, liver, lung, spleen, and bone. Recent study of (TRAP) gene expression has provided evidence for distinct promoters within the (TRAP) gene, suggesting that the gene has alternative, tissue-preferred mRNA transcripts. Examination of endogenous (TRAP) exon 1B and 1C mRNA transcripts revealed tissue-preferred transcript abundance with increased exon 1B transcripts detected in liver and kidney and increased exon 1C transcripts detected in bone and spleen. In this investigation, we have made transgenic mice that express a marker gene driven by two candidate promoters, designated BC and C, within the (TRAP) gene. The BC and C promoters are 2.2 and 1.6 kb, respectively, measured from the translation initiation site. Evaluation of BC transgenic lines demonstrated robust expression in multiple tissues. In contrast, significant transgene expression was not detected in C transgenic lines. Evaluation of transgene mRNAs in BC transgenic lines revealed that virtually all expression was in the form of B transcripts, suggesting that the tissue-preferred pattern of endogenous (TRAP) was not replicated in the BC transgenic line. Likewise, osteoclastogenic cultures from BC, but not C, transgenic bone marrow cells expressed the transgene following receptor activator of NFkappaB ligand/macrophage colony-stimulating factor stimulation. In conclusion, when compared with the 2.2-kb BC portion of the (TRAP) promoter region, the 1.6-kb C portion does not account for significant gene expression in vivo or in vitro; production of the bone- and spleen-preferred (TRAP) C transcript must depend on regulatory elements outside of the 2.2-kb promoter. As the majority of currently investigated transcription factors that influence transcriptional regulation of osteoclast gene expression bind within the 1.6-kb C portion of the (TRAP) promoter, it is likely that transcription binding sites outside of the 2.2-kb region will have profound effects on regulation of the gene in vivo and in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)-Mn(II) center and is distinguished from other PAPs by its increased catalytic efficiency for a range of activated and unactivated phosphate esters, its strict requirement for Mn(II), and the presence of a mu-oxo bridge at pH 4.90. This enzyme displays maximum catalytic efficiency (k(cat)/K-m) at pH 4.5, whereas its catalytic rate constant (k(cat)) is maximal at near-neutral pH, and, in contrast to other PAPs, its catalytic parameters are not dependent on the pK(a) of the leaving group. The crystal structure of the phosphate-bound Fe(III)-Mn(II) PAP has been determined to 2.5-Angstrom resolution (final R-free value of 0.256). Structural comparisons of the active site of sweet potato, red kidney bean, and mammalian PAPs show several amino acid substitutions in the sweet potato enzyme that can account for its increased catalytic efficiency. The phosphate molecule binds in an unusual tripodal mode to the two metal ions, with two of the phosphate oxygen atoms binding to Fe(III) and Mn(II), a third oxygen atom bridging the two metal ions, and the fourth oxygen pointing toward the substrate binding pocket. This binding mode is unique among the known structures in this family but is reminiscent of phosphate binding to urease and of sulfate binding to A protein phosphatase. The structure and kinetics support the hypothesis that the bridging oxygen atom initiates hydrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caustis blakei produces an intriguing morphological adaptation by inducing dauciform roots in response to phosphorus (P) deficiency. We tested the hypothesis that these hairy, swollen lateral roots play a similar role to cluster roots in the exudation of organic chelators and ectoenzymes known to aid the chemical mobilization of sparingly available soil nutrients, such as P. Dauciform-root development and exudate composition (carboxylates and acid phosphatase activity) were analysed in C. blakei plants grown in nutrient solution under P-starved conditions. The distribution of dauciform roots in the field was determined in relation to soil profile depth and matrix. The percentage of dauciform roots of the entire root mass was greatest at the lowest P concentration ([P]) in solution, and was suppressed with increasing solution [P], while in the field dauciform roots were predominately located in the upper soil horizons, and decreased with increasing soil depth. Citrate was the major carboxylate released in an exudative burst from mature dauciform roots, which also produced elevated levels of acid phosphatase activity. Malonate was the dominant internal carboxylate present, with the highest concentration in young dauciform roots. The high concentration of carboxylates and phosphatases released from dauciform roots, combined with their prolific distribution in the organic surface layer of nutrient-impoverished soils, provides an ecophysiological advantage for enhancing nutrient acquisition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purple acid phosphatases are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. Only one isoform of similar to 35 kDa has been isolated from animals, where it is associated with bone resorption and microbial killing through its phosphatase activity, and hydroxyl radical production, respectively. Using the sensitive PSI-BLAST search method, sequences representing new purple acid phosphatase-like proteins have been identified in mammals, insects and nematodes. These new putative isoforms are closely related to the similar to 55 kDa purple acid phosphatase characterized from plants. Secondary structure prediction of the new human isoform further confirms its similarity to a purple acid phosphatase from the red kidney bean. A structural model for the human enzyme was constructed based on the red kidney bean purple acid phosphatase structure. This model shows that the catalytic centre observed in other purple acid phosphatases is also present in this new isoform. These observations suggest that the sequences identified in this study represent a novel subfamily of plant-like purple acid phosphatases in animals and humans. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox regulation of signalling pathways is critical in proliferation and apoptosis; redox imbalance can lead to pathologies such as inflammation and cancer. Vaccinia H1-related protein (VHR; DUSP3) is a dual-specificity phosphatase important in controlling MAP kinase activity during cell cycle. the active-site motif contains a cysteine that acts as a nucleophile during catalysis. We used VHR to investigate the effect of oxidation in vitro on phosphatase activity, with the aim of determining how the profile of site-specific modification related to catalytic activity. Recombinant human VHR was expressed in E. coli and purified using a GST-tag. Protein was subjected to oxidation with various concentrations of SIN-1 or tetranitromethane (TNM) as nitrating agents, or HOCl. the activity was assayed using either 3-O-methylfluorescein phosphate with fluorescence detection or PIP3 by phosphate release with malachite green. the sites of oxidation were mapped using HPLC coupled to tandem mass spectrometry on an ABSciex 5600TripleTOF following in-gel digestion. More than 25 different concentration-dependent oxidative modifications to the protein were detected, including oxidations of methionine, cysteine, histidine, lysine, proline and tyrosine, and the % oxidized peptide (versus unmodified peptide) was determined from the extracted ion chromatograms. Unsurprisingly, methionine residues were very susceptible to oxidation, but there was a significant different in the extent of their oxidation. Similarly, tyrosine residues varied greatly in their modifications: Y85 and Y138 were readily nitrated, whereas Y38, Y78 and Y101 showed little modification. Y138 must be phosphorylated for MAPK phosphatase activity, so this susceptibility impacts on signalling pathways. Di- and tri- oxidations of cysteine residues were observed, but did not correlate directly with loss of activity. Overall, the catalytic activity did not correlate with redox state of any individual residue, but the total oxidative load correlated with treatment concentration and activity. This study provides the first comprehensive analysis of oxidation modifications of VHR, and demonstrates both heterogenous oxidant effects and differential residue susceptibility in a signalling phosphatase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.