916 resultados para Propylene-glycol
Resumo:
Solubility represents a limiting factor when testing new compounds in animal experiments, since solubilizing agents generally have pharmacological effects that can interfere with the studied substance. Vehicles are commonly used for solubilizing certain substances including apolar and polar extracts obtained from medicinal plants. In this study, fifteen vehicles were investigated on mice neuromuscular preparations. A known in vitro neuroblocker myotoxin from Bothrops jararacussu venom, bothropstoxin-I, was used as a pharmacological tool for testing the medicinal potential of apolar and polar extracts (hexane, dichloromethane, ethyl acetate and methanol) obtained from Casearia sylvestris Sw. leaves, which in turn were used for testing their solubility and concomitantly to produce no change on basal response of indirectly stimulated mouse phrenic nerve-diaphragm preparations. Taken together in vitro biological system and extracts solubility, our results showed that dimethyl sulphoxide and polyethylene glycol 400 were the better vehicles, and methanol extract solubilized on PEG 400 was the only one able to act against the paralysis induced by the myotoxin. Thus, this study points out to the relevant role that vehicles exhibit for extracting the potential pharmacological activity of plants in a given test system.
Resumo:
The hot melt granulation of a coarse pharmaceutical powder in a top spray spouted bed is described. The substrate was lactose-polyvinylpyrrolidone particles containing or not acetaminophen as a drug model. Polyethylene glycol (MW, 4000) used as binder was atomized onto the bed by a two-fluid spray nozzle. The granulation experiments followed a 2(3) factorial design with triplicates at the center point and were carried out by varying the spray nozzle vertical position, the atomizing air flow rate and the binder feed rate. Granules were evaluated by their pharmacotechnical properties like size distribution, bulk and tapped densities, Carr index, Hausner ratio and tableting characteristics. Analysis of variance showed that granule sizes were affected by the PEG feed rate and atomizing air pressure at the significance levels of 1.0 and 5.0%. respectively, but spray nozzle distance to the substrate bed was not significant. The spray conditions also affected granule flow and consolidation properties. measured by the Carr index and Hausner ratio. Measured densities, Carr indexes and Hausner ratios proved that granules flowability and consolidation properties are adequate for pharmaceutical processing and tableting. Tablets prepared with acetaminophen-containing granules showed good properties and adequate release profiles in in vitro dissolution tests. The results indicate the suitability of spouted beds for the hot melt granulation of pharmaceutical coarse powders. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
X-Ray diffraction is reported from mesoporous silicate films grown at the air/water interface. The films were studied both as powdered films, and oriented on silicon or mica sheets. At early stages of growth we observe Bragg diffraction from a highly ordered cubic phase, with both long and short d-spacing peaks. We have assigned this as a discontinuous micellar Pm3n phase in which the silica is partly ordered. Later films retain only the known hexagonal p6m peaks and have lost any order both at short d-spacings and the longer d-spacing Bragg peaks characteristic of the cubic structure. The silica framework is considerably expanded from that in bulk amorphous silica, average Si Si distances are some 30% greater. Incorporation of glycerol or polyethylene glycol preserves the earlier cubic structure. To be consistent with earlier, in situ, X-ray and neutron reflectivity data we infer that both structures are produced after a phase transition from a less-ordered him structure late in the induction phase. The structural relations between the film Pm3n and p6m phase(s) and the known bulk SBA-1 and MCM-41 phases are briefly discussed.
Resumo:
This study quantified the release of monomers from polymerized specimens of four commercially available resin composites and one glass ionomer cement immersed in water:ethanol solutions. Individual standard curves were prepared from five monomers: (1) triethylene glycol dimethacrylate (TEGDMA), (2) 2-hydroxy-ethyl methacrylate (HEMA), (3) urethane dimethacrylate (UDMA), (4) bisphenol A glycidyl dimethacrylate (BISGMA), and (5) bisphenol A. The concentration of the monomers was determined at Days 1, 7, 30, and 90 with the use of electrospray ionization/mass spectrometry. Data were expressed in mean mumol per mm(2) surface area of specimen and analyzed with Scheffe's test (P < 0.05). The following monomers were found in water: monomers (1) and (2) from Delton sealant, monomer (5) from ScotchBond Multipurpose Adhesive and Delton sealant, monomer (3) from Definite and monomer (4) from Fuji II LC, ScotchBond Multipurpose Adhesive, Synergy and Definite. All these monomers increased in concentration over time, with the exception of monomer (1) from Delton sealant. Monomers (3) and (5) were found in extracts of materials despite their absence from the manufacturer's published composition. All monomers were released in significantly higher concentrations in water:ethanol solutions than in water. The greatest release of monomers occurred in the first day. The effect of the measured concentrations of monomers (1-5) on human genes, cells, or tissues needs to be considered with the use of a biological model. (C) 2002 Wiley Periodicals, Inc.
Calcium Carbonate Particle Growth Depending on Coupling among Adjacent Layers in Hybrid LB/LbL Films
Resumo:
There are practical and academic situations that justify the study of calcium carbonate crystallization and especially of systems that are associated with organic matrices and a confined medium. Despite the fact that many different matrices have been studied, the use of well-behaved, thin organic films may provide new knowledge about this system. In this work, we have studied the growth of calcium carbonate particles on well-defined organic matrices that were formed by layer-by-layer (LbL) polyelectrolyte films deposited on phospholipid Langmuir-Blodgett films (LB). We were able to change the surface electrical charge density of the LB films by changing the proportions of a negatively charged lipid, the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid (DMPA), and a zwitterionic lipid. dimyristoyl-sn-glycero-phosphatidylethanolamine (DMPE). This affects the subsequent polyelectrolyte LbL film deposition, which also changes the the nature of the bonding (electrostatic interaction or hydrogen bonding). This approach allowed for the formation of calcium carbonate particles of different final shapes, roughnesses, and sizes. The masses of deposited lipids, polyelectrolytes, and calcium cabonate were quantified by the quartz crystal microbalance technique. The structures of obtained particles were analyzed by scanning electron microscopy.
Resumo:
A modification of the Pechini method was applied to obtain luminescent rare earth orthophosphates. The developed synthetic route is based on the ability of the tripolyphosphate anion (P3O105-) to act both as a complexing agent and as an orthophosphate precursor. Heating of aqueous solutions containing RE3+, Eu3+, P3O105-, citric acid, and ethylene glycol led to polymeric resins. The ignition of these resins at different temperatures yielded luminescent orthophosphates. The produced nanosized phosphors (YPO4:Eu3+, (Y,Gd)PO4:Eu3+, and LaPO4:Eu3+) were analyzed by infrared and luminescence spectroscopies, X-ray diffractometry, and scanning electron microscopy.
Resumo:
A sensitive and automated method is described for determination of rifampicin in plasma samples for therapeutic drug monitoring by in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC). Important factors in the optimization of in-tube SPME are discussed, such as coating type, sample pH, sample draw/eject volume, number of draw/eject cycles, and draw/eject flow rate. Analyte pre-concentrated in the polyethylene glycol phase was directly transferred to the liquid chromatographic column by percolation of the mobile phase, without carryover. The method was linear over the 0.1-100 mu g/mL range, with a linear coefficient value (r(2)) of 0.998. The inter-assay precision presented coefficient of variation <= 1.7%. The effectiveness and practicability of the proposed method are proven by analysis of plasma samples from ageing patients undergoing therapy with rifampicin. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The interactions between phosphorylcholine-substituted chitosans (PC-CH) and calf-thymus DNA (ct-DNA) were investigated focusing on the effects of the charge ratio, the pH, and phosphorylcholine content on the size and stability of the complexes using the ethidium bromide fluorescence assay, gel electrophoresis, dynamic light scattering. and fluorescence microscopy. The size and colloidal stability of deacetylated chitosan (CH/DNA) and PC-CH/DNA complexes were strongly dependent on phosphorylcholine content, charge ratios, and pH. The interaction strengths were evaluated from ethidium bromide fluorescence, and at N/P ratios higher than 5.0, no DNA release was observed in any synthesized PC-CH/DNA polyplexes by gel electrophoresis. The PC-CH/DNA polyplexes exhibited a higher resistance to aggregation compared to deacetylated chitosan (CH) at neutral pH. At low pH values highly charged chitosan and its phosphorylcholine derivatives had strong binding affinity with DNA, whereas at higher pH Values CH formed large aggregates and only C-CH derivatives were able to form small nanoparticles with hydrodynamic radii varying from 100 to 150 nm. Nanoparticles synthesized at low ionic strength with PC-CH derivatives containing moderate degrees of substitution (DS = 20% and 40%) remained stable for weeks. Photomicroscopies also confirmed that rhodamine-labeled PC(40)CH derivative nanoparticles presented higher colloidal stability than those synthesized using deacetylated chitosan. Accordingly, due to their improved physicochemical properties these phosphorylcholine-modified chitosans provide new perspectives for controlling the properties of polyplexes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Tyrosine hydroxylase deficiency is an autosomal recessive disorder resulting from cerebral catecholamine deficiency. Tyrosine hydroxylase deficiency has been reported in fewer than 40 patients worldwide. To recapitulate all available evidence on clinical phenotypes and rational diagnostic and therapeutic approaches for this devastating, but treatable, neurometabolic disorder, we studied 36 patients with tyrosine hydroxylase deficiency and reviewed the literature. Based on the presenting neurological features, tyrosine hydroxylase deficiency can be divided in two phenotypes: an infantile onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a complex encephalopathy with neonatal onset (type B). Decreased cerebrospinal fluid concentrations of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol, with normal 5-hydroxyindoleacetic acid cerebrospinal fluid concentrations, are the biochemical hallmark of tyrosine hydroxylase deficiency. The homovanillic acid concentrations and homovanillic acid/5-hydroxyindoleacetic acid ratio in cerebrospinal fluid correlate with the severity of the phenotype. Tyrosine hydroxylase deficiency is almost exclusively caused by missense mutations in the TH gene and its promoter region, suggesting that mutations with more deleterious effects on the protein are incompatible with life. Genotype-phenotype correlations do not exist for the common c.698G > A and c.707T > C mutations. Carriership of at least one promotor mutation, however, apparently predicts type A tyrosine hydroxylase deficiency. Most patients with tyrosine hydroxylase deficiency can be successfully treated with l-dopa.
Resumo:
Excessive free-radical production due to various bacterial components released during bacterial infection has been linked to cell death and tissue injury. Peroxynitrite is a highly reactive oxidant produced by the combination of nitric oxide (NO) and superoxide anion, which has been implicated in cell death and tissue injury in various forms of critical illness. Pharmacological decomposition of peroxynitrite may represent a potential therapeutic approach in diseases associated with the overproduction of NO and superoxide. In the present study, we tested the effect of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Mice were injected i.p. with LPS 40 mg/kg with or without FP15 [Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin] (0.1, 0.3, 1, 3, or 10 mg/kg per hour). Mice were killed 12 h later, followed by the harvesting of samples from the lung, liver, and gut for malondialdehyde and myeloperoxidase measurements. In other subsets of animals, blood samples were obtained by cardiac puncture at 1.5, 4, and 8 h after LPS administration for cytokine (TNF-alpha, IL-1 beta, and IL-10), nitrite/nitrate, alanine aminotransferase, and blood urea nitrogen measurements. Endotoxemic animals showed an increase in survival from 25% to 80% at the FP15 doses of 0.3 and 1 mg/kg per hour. The same dose of FP15 had no effect on plasma levels of nitrite/nitrate. There was a reduction in liver and lung malondialdehyde in the endotoxemic animals pretreated with FP15, as well as in hepatic myeloperoxidase and biochemical markers of liver and kidney damage (alanine aminotransferase and blood urea nitrogen). In a bacterial model of sepsis induced by cecal ligation and puncture, FP15 treatment (0.3 mg/kg per day) significantly protected against mortality. The current data support the view that peroxynitrite is a critical factor mediating liver, gut, and lung injury in endotoxemia and septic shock: its pharmacological neutralization may be of therapeutic benefit.
Resumo:
The aim of this study was to obtain and to characterize microemulsions containing 5-aminolevulinic acid (5-ALA) and to investigate the influence of these systems in drug skin permeation for further topical photodynamic therapy (PDT). 5-ALA was incorporated in water-in-oil (W/O), bicontinuous (Bc), and oil-in-water (O/W) microemulsions obtained by the titration of ethyl oleate and PEG-8 caprylic/capric glycerides:polyglyceryl-6 dioleate (3:1) mixtures with water. Selected systems were characterized by conductivity, viscosity, size of the droplets, and drug release. The stability of the drug in the microemulsions was also assessed. Moreover, the in vitro and in vivo skin permeation of 5-ALA was investigated using diffusion cells and confocal scanning laser microscopy (CSLM), respectively. Despite the fact that the O/W microemulsion decreased the 5-ALA diffusion coefficient and retarded the drug release, it also significantly increased the in vitro drug skin permeation when compared to other 5-ALA carriers. It was observed by CSLM that the red fluorescence of the skin increased homogeneously in the deeper skin layers when the 5-ALA microemulsion was applied in vivo, probably due to the formation of the photoactive protoporphyrin IX. The microemulsion developed carried 5-ALA to the deeper skin layers, increasing the red fluorescence of the skin and indicating the potentiality of the system for topical 5-ALA-PDT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Contents The current study examined the protective effects of l-glutamine and cytochalasin B during vitrification of immature bovine oocytes. Oocyte vitrification solution (PBS supplemented with 10% FCS, 25% EG, 25% DMSO and 0.5 m trehalose) was the vitrification control. Treatments were the addition of 7 mu g/ml cytochalasin B, 80 mm glutamine or both cytochalasin and glutaminine for 30 s. After warming, oocytes were matured in vitro for 24 h, fixed and stained with Hoechst (33342) for nuclear maturation evaluation. l-glutamine improved the vitrified/warmed immature bovine oocytes viability (32.8%), increasing the nuclear maturation rates compared to other treatments and the no treatment vitrified control (17.4%). There was, however, no effect of cytochalasin B on in vitro maturation (14.4%).
Resumo:
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The role of inorganic content on physical properties of resin composites is well known. However, its influence on polymerization stress development has not been established. The aim of this investigation was to evaluate the influence of inorganic fraction on polymerization stress and its determinants, namely, volumetric shrinkage, elastic modulus and degree of conversion. Methods. Eight experimental composites containing 1:1 BisGMA (bisphenylglycidyl dimethacrylate): TEGDMA (triethylene glycol dimethacrylate) (in mol) and barium glass at increasing concentrations from 25 to 60 vol.% (5% increments) were tested. Stress was determined in a universal test machine using acrylic as bonding substrate. Nominal polymerization stress was obtained diving the maximum load by the cross-surface area. Shrinkage was measured using a water picnometer. Elastic modulus was obtained by three-point flexural test. Degree of conversion was determined by FT-Raman spectroscopy. Results. Polymerization stress and shrinkage showed inverse relationships with filler content (R(2) = 0.965 and R(2) = 0.966, respectively). Elastic modulus presented a direct correlation with inorganic content (R(2) = 0.984). Degree of conversion did not vary significantly. Polymerization stress showed a strong direct correlation with shrinkage (R(2) = 0.982) and inverse with elastic modulus (R(2) = 0.966). Significance. High inorganic contents were associated with low polymerization stress values, which can be explained by the reduced volumetric shrinkage presented by heavily filled composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Different monomer structures lead to different physical and mechanical properties for both the monomers and the polymers. The objective of this study was to determine the influence of the bisphenylglycidyl dimethacrylate (BisGMA) concentration (33, 50 or 66 mol%) and the co-monomer content [triethylene glycol dimethacrylate (TEGDMA), ethoxylated bisphenol-A dimethacrylate (BisEMA), or both in equal parts] on viscosity (eta), degree of conversion (DC), and flexural strength (FS). eta was measured using a viscometer, DC was obtained by Fourier transfer Raman (FT-Raman) spectroscopy, and FS was determined by three-point bending. At 50 and 66% BisGMA, increases in eta were observed following the partial and total substitution of TEGDMA by BisEMA. For 33% BisGMA, eta increased significantly only when no TEGDMA was present. The DC was influenced by BisGMA content and co-monomer type. Mixtures containing 66% BisGMA showed a lower DC compared with mixtures containing other concentrations of BisGMA. The BisEMA mixtures had a lower DC compared with the TEGDMA mixtures. The FS was influenced by co-monomer content only. BisEMA mixtures presented a statistically lower FS, followed by TEGDMA + BisEMA mixtures, and then by TEGDMA mixtures. Partial or total replacement of TEGDMA by BisEMA increased eta, which was associated with the observed decreases in DC and FS. Although the BisGMA content influenced the DC, it did not affect the FS results.