879 resultados para Production chain
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents the cashew nuts chain in the State of Rio Grande do Norte between 1960 and 2009. The main purpose of this research was to find the reason of the low productivity of the cashew nut in this state, identifying in the cashew's chain production the struggling points which were limiting the commerce of this product through the distribution network. Therefore, the Supply Chain Management was used as a logistic analysis methodology, focusing on relationships management between the nodes of this chain, from the producer until the final customer. Many problems were found: first, the precarious production conditions of the small producer don't lead to reach the demanded productivity by the market. The distance, the lack of communication of the small producers among themselves and an archaic way of dealing with their businesses, may be an explanatory reason for this problem, considering that those factors are the main elements which contribute for the weakening of the small producer placed in the productive chain. Another spotted point was that the business-oriented relationship between the producer and the local trader does not allow the small producer's economical development, which interferes in any technological investment to reach a good quality production that fulfills the market demand. And also, the fact that there is a tendency of the final costumer to require lower prices day-byday, forcing a pressure on the nodes transferring to the other and successively until arriving at the producer who inevitably is suffering the biggest impacts from this mentioned pressure.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The general assumption under which the (X) over bar chart is designed is that the process mean has a constant in-control value. However, there are situations in which the process mean wanders. When it wanders according to a first-order autoregressive (AR (1)) model, a complex approach involving Markov chains and integral equation methods is used to evaluate the properties of the (X) over bar chart. In this paper, we propose the use of a pure Markov chain approach to study the performance of the (X) over bar chart. The performance of the chat (X) over bar with variable parameters and the (X) over bar with double sampling are compared. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
When the (X) over bar chart is in use, samples are regularly taken from the process, and their means are plotted on the chart. In some cases, it is too expensive to obtain the X values, but not the values of a correlated variable Y. This paper presents a model for the economic design of a two-stage control chart, that is. a control chart based on both performance (X) and surrogate (Y) variables. The process is monitored by the surrogate variable until it signals an out-of-control behavior, and then a switch is made to the (X) over bar chart. The (X) over bar chart is built with central, warning. and action regions. If an X sample mean falls in the central region, the process surveillance returns to the (Y) over bar chart. Otherwise. The process remains under the (X) over bar chart's surveillance until an (X) over bar sample mean falls outside the control limits. The search for an assignable cause is undertaken when the performance variable signals an out-of-control behavior. In this way, the two variables, are used in an alternating fashion. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A study is performed to examine the economic advantages of using performance and surrogate variables. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an economic design of (X) over bar control charts with variable sample sizes, variable sampling intervals, and variable control limits. The sample size n, the sampling interval h, and the control limit coefficient k vary between minimum and maximum values, tightening or relaxing the control. The control is relaxed when an (X) over bar value falls close to the target and is tightened when an (X) over bar value falls far from the target. A cost model is constructed that involves the cost of false alarms, the cost of finding and eliminating the assignable cause, the cost associated with production in an out-of-control state, and the cost of sampling and testing. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A comprehensive study is performed to examine the economic advantages of varying the (X) over bar chart parameters.
Resumo:
The aim of this work was evaluating the performance of several cultivars of green corn for consumption 'in natura' in different planting dates. The first planting date was on May 26th, and the others, every 40 days. The hybrids (treatments) were: AG-1051, Agroeste 1567, BM-3061, Prezoto-32D10, PL-6880, BX-1382 and GNZ-2004. The following characteristics were evaluated: production, commercial ears weight without husk, commercial ears number, commercial ears diameter and length, male flowering, plant height and height of ear corn insertion. The cultivars AG1051, Agroeste 1567 and BM 3061 presented the best results compared to the others and they should be used in green corn production for ` in natura' consumption in Passos County, MG.
Resumo:
The objective of the present study was to estimate the allele and genotype frequencies of the CSN3/Hinfl and LGB/HaeIII gene polymorphisms in beef cattle belonging to different genetic groups, and to determine the effects of these polymorphisms on growth and carcass traits in these animals, which are submitted to an intensive production model. Genotyping was performed on 79 Nelore, 30 Canchim (5/8 Charolais + 3/8 Zebu) and 275 crossbred cattle originating from the crosses of Simmental (n = 30) and Angus (n = 245) sires with Nelore females. Body weight, weight gain, dressing percentage, longissimus dorsi area and backfat thickness were fitted using the GLM procedure, and least square means of the genotypes were compared by the F test. The results showed that the CSN3/Hinfl and LGB/HaeIII polymorphisms did not have any effect on growth or carcass traits (p > 0.05). Copyright by the Brazilian Society of genetics.
Resumo:
This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.
Resumo:
Purpose: This paper aims to perform an empirical investigation about the constructs and indicators of the supply chain management practices framework. Design/methodology/approach: The measuring framework proposed is based on a survey that was carried out on 107 Brazilian companies. Statistical techniques were employed to verify, validate, and test the reliability of the constructs and their indicators. To validate this framework principal component analysis and structural equation modeling techniques were used. Findings: In general, previous studies suggest six constructs for measuring the supply chain management practices framework. However, in this study a framework was achieved with four constructs of supply chain management practices, namely, supply chain (SC) integration for production planning and control (PPC) support, information sharing about products and targeting strategies, strategic relationship with customer and supplier, and support customer order. This framework has adequate levels of validity and reliability. Research limitations/implications: The main limitation of this study was that only a small sample of companies in a single sector and country were surveyed, and therefore there needs to be further research considering the special conditions in other countries. Originality/value: This study investigated statistically set indicators to discuss the topic supply chain management practices. The framework obtained has good quality of validity and reliability indicators. Thus, an alternative framework has been added to measure supply chain management practices, which is currently a popular topic in the supply chain mainstream literature. Both defined constructs and the validated indicators can be used in other studies on supply chain management. © Emerald Group Publishing Limited.
Resumo:
The supply chain management, postponement and demand management operations are of strategic importance to the economic success of organizations because they directly influence the production process. The aim of this paper is to analyze the influence of the postponement in an enterprise production system with make-to-stock and with seasonal demand. The research method used was a case study, the instruments of data collection were semi-structured interviews, document analysis and site visits. The research is based on the following issues: Demand Management which can be understood as a practice that allows you to manage and coordinate the supply chain in reverse, in which consumers trigger actions for the delivery of products. The Supply Chain Management is able to allow the addition of value, exceeding the expectations of consumers, developing a relationship with suppliers and customer's win-win. The Postponement strategy must fit the characteristics of markets that require variety of customized products and services, lower cost and higher quality, aiming to support decision making. The production system make-to-stock shows enough interest to organizations that are operating in markets with high demand variability. © 2011 IEEE.