328 resultados para Primulaceae.
Resumo:
New pollen and radiocarbon data from an 8.6-m coastal section, Cape Shpindler (69°43' N; 62°48' E), Yugorski Peninsula, document the latest Pleistocene and Holocene environmental history of this low Arctic region. Twelve AMS 14C dates indicate that the deposits accumulated since about 13,000 until 2000 radiocarbon years BP. A thermokarst lake formed ca. 13,000-12,800 years BP, when scarce arctic tundra vegetation dominated the area. By 12,500 years BP, a shallow lake existed at the site, and Arctic tundra with Poaceae, Cyperaceae, Salix, Saxifraga, and Artemisia dominated nearby vegetation. Climate was colder than today. Betula nana became dominant during the Early Preboreal period about 9500 years BP, responding to a warm event, which was one of the warmest during the Holocene. Decline in B. nana and Salix after 9500 years BP reflects a brief event of Preboreal cooling. A subsequent increase in Betula and Alnus fruticosa pollen percentages reflects amelioration of environmental conditions at the end of Preboreal period (ca. 9300 years BP). A decline in arboreal taxa later, with a dramatic increase in herb taxa, reflects a short cold event at about 9200 years BP. The pollen data reflect a northward movement of tree birch, peaking at the middle Boreal period, around 8500 years BP. Open Betula forest existed on the Kara Sea coast of the Yugorski Peninsula during the Atlantic period (8000-4500 years BP), indicating that climate was significantly warmer than today. Deteriorating climate around the Atlantic-Subboreal boundary (ca. 4500 years BP) is recorded by a decline in Betula percentages. Sedimentation slowed at the site, and processes of denudation and/or soil formation started at the beginning of the Subatlantic period, when vegetation cover on Yugorski Peninsula shifted to near-modern assemblages.
Resumo:
In recent years enormous success has been achieved in varve counting of the Eifel maar lakes, but a detailed correlation with the biostratigraphy has been missing. In this paper, we present new palynological results of the Lateglacial sequences from Holzmaar Lake and Meerfelder Maar Lake based on annually laminated sediments. In particular, the Meerfelder Maar has great potential, because, in contrast to the Holzmaar, the sequence between the Ulmener Maar Tephra (11 000 varve years BP) and the Laacher See Tephra (12 880 varve years BP) including the Younger Dryas is undisturbed and complete. Therefore, we currently use the Meerfelder Maar chronology (Brauer et al., 1999b) as an independent varve calendar for the biostratigraphy of the Lateglacial. The palynological signals of both maar lakes are in good agreement and can easily be correlated with one another and with type sections/type regions in northwestern Germany and Jutland. The sequences of the Eifel maar lakes have the quality of hypostratotypes with regional biozones based on an absolute time scale.
Resumo:
To unravel the climatic and environmental dynamics in the borderlands of the Aegean Sea during the early and middle Holocene, and notably for the interval of sapropel S1 (S1) formation, we have analysed terrestrial palynomorphs from a marine core in the northern Aegean Sea. The qualitative results were complemented by quantitative pollen-based climate reconstructions. A land-sea correlation was established based on pollen data and sediment lightness measurements from the same core, and previously published benthic foraminifer data from a nearby core. The borderlands of the Aegean Sea underwent a transition from an open vegetation to oak-dominated woodlands between ~10.4 and ~9.5 ka cal BP. A coeval increase in winter precipitation suggests that moisture availability was the main factor controlling Holocene reforestation. The ~50% higher winter precipitation during S1 formation relative to "pre-sapropelic" conditions suggests a strong contribution from the borderlands of the Aegean Sea to the freshwater surplus during S1 formation. The humid and mild winter conditions during S1 formation were repeatedly punctuated by short-term climatic events that caused a partial deforestation and a reorganisation within the broad-leaved arboreal vegetation. In the marine realm, these events are documented by improved benthic oxygenation. The strongest event represents the regional expression of the 8.2 ka cold event and led to an interruption in S1 formation. Except for the interval of S1 formation, the pollen-derived winter temperatures correlate with the smoothed GISP2 K+ series. They support the previously published, marine-based concept that the intensity of the Siberian High strongly controlled the winter climate in the Aegean region. During S1 formation in the Aegean Sea, however, climate conditions in the borderlands were more strongly affected by the monsoonally influenced climate system of the lower latitudes.