956 resultados para Precipitation radar
Resumo:
The adsorption of cadmium(II) on freshly precipitated aluminium(III) hydroxide in the presence of a range of chelates has been investigated. By precipitating the metal, chelate and adsorbent together it is possible to change the pH variation of the metal-complex adsorption from anionic, ligand-like, binding to cationic binding. This is a general phenomenon and is explained by the formation of a ternary Al-O-Cd-L surface species. As a consequence of the preparation method, the pH edge is found to shift to lower pH values in the presence of the chelate which gives rise to an apparent increase in adsorption of Cd2+. This increase is, in general, most pronounced at [chelate] / [metal] > 1. Computer modelling shows that the observed trends result from the competition between Al-O-Cd-L and Al-L for the available aluminium( III) binding sites. The enhanced adsorption in the presence of phenylenediaminetetraacetate is anomalous since it is observed at a [ chelate] / [metal] approximate to 0.1 and cannot be interpreted by the simple competition model.
Resumo:
A search for a submerged jet ski and the lost limb of its driver involved in a collision with a speedboat was made in a shallow lake in Northern Ireland. The location of both was crucial to establishing events at the time of the accident. Local intelligence suggested both objects were likely to be partially-buried by lacustrine silt. To avoid sediment churning, this required non-invasive, completely non-destructive assessment and mapping of the scene. A MALA RAMAC ground-penetrating radar system (GPR) mounted on floats for surveying from walkways and jetties or placed in a small rubber dinghy for offshore profiling was used. A grid was established and each line surveyed with 100, 200 and 400MHz antennae. In waters over 6m deep GPR data showed the form of the lake floor but excessive ringing occurred in the data. In waters less than 6m deep ringing diminished on both 100 and 200MHz data, the latter displaying the best trade-off between depth penetration and horizontal object resolution. 400MHz data failed to be of use in waters over 2m deep and at these depths showed only limited improvement of image quality compared to 200MHz data. Surface objects such as a wooden walkway caused interference on 200 and 400MHz data when antennae were oriented both normal and parallel to survey direction; this may be a function of the low attenuation of radar waves in freshwater, allowing excellent lateral and vertical radar wave penetration. On 200MHz data the damaged jet-ski was clearly imaged in a location that contradicted the speedboat driver's account of the accident.
Resumo:
A simple method for the selection of the appropriate choice of surface-mounted loading resistor required for a thin radar absorber based on a high-impedance surface (HIS) principle is demonstrated. The absorber consists of a HIS, (artificial magnetic ground plane), thickness 0.03 lambda(0) surface-loaded resistive-elements interconnecting a textured surface of square patches. The properties of absorber are characterized under normal incident using a parallel plate waveguide measurement technique over the operating frequency range of 2.6-3.95 GHz. We show that for this arrangement return loss and bandwidth are insensitive to +/- 2% tolerance variations in surface resistor values about the value predicted using the method elaborated in this letter, and that better than -28 dB at 3.125 GHz reflection loss can be obtained with an effective working bandwidth of up to 11% at -10 dB reflection loss. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 1733-1775, 2009; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/mop.24454