971 resultados para Portland Cement Mortars


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report presents the results of research on the influence of trace compounds from rock salt deicers on portland cement mortar and concrete. An evaluation of the deicers in stock throughout the state showed that about ninety-five percent contained enough sulfate to cause accelerated deterioration of concrete. Of the impurities found in rock salts, sulfate compounds of calcium and magnesium were found to be equally deleterious. Magnesium chloride was found to be innocuous. Introduction of fly ash eliminated the damage to portland cement mortar caused by sulfates. When used with frost resistant Alden aggregate in fly ash concrete and exposed to a variety of deicer brine compositions, the concrete did not deteriorate after exposure. With the exception of a high calcium brine, the behavior of the frost-prone Garrison aggregate was independent of deicer treatment; the high calcium brine reduced frost damage with this aggregate. Two approaches to reducing sulfate deterioration from deicers are suggested as (1) limiting the amount of sulfate to about 0.28 percent, and (2) making concrete sulfate-resistant by using fly ash. Techniques for making existing concrete deicer-sulfate-resistant are essential to a practical solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The freeze-thaw resistance of concretes was studied. Nine concrete mixes, made with five cements and cement-Class C fly ash combinations, were exposed to freeze-thaw cycling following 110 to 222 days of moist curing. Prior to the freeze-thaw cycling, the specimens were examined by a low-vacuum scanning electron microscope (SEM) for their microstructure. The influence of a wet/dry treatment was also studied. Infilling of ettringite in entrained air voids was observed in the concretes tested. The extent of the infilling depends on the period of moist curing as well as the wet/dry treatment. The concretes with 15% Class C fly ash replacement show more infilling in their air voids. It was found that the influence of the infilling on the freeze-thaw durability relates to the air spacing factor. The greater the spacing factor, the more expansion under the freeze-thaw cycling. The infilling seems to decrease effective air content and to increase effective spacing factor. The infilling also implies that the filled air voids are water-accessible. These might lead to concrete more vulnerable to the freeze-thaw attack. By combining the above results with field observations, one may conclude that the freeze-thaw damage is a factor related to premature deterioration of portland cement concrete pavements in Iowa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concrete admixture Ipanex (Registered trademark) manufactured by IPA Systems Inc. was submitted to the Iowa Department of Transportation (Iowa DOT) New Products Committee on April 15, 1998. The New Products Committee requested that the Iowa DOT Materials Laboratory evaluate the durability, corrosion inhibiting and concrete permeability reduction effects of this admixture. This report is intended to present the results of testing in Iowa DOT materials laboratories, review a Pennsylvania State University report, as well as review the IPA Systems Inc. marketing literature. The objective is to provide the New Products Committee with a recommendation concerning approval of this product based on the information gathered. The portland cement concrete admixture Ipanex (Registered trademark) did not show any significant benefit in terms of improvement in areas of permeability, chloride resistance and strength in the testing performed at the Iowa DOT. The literature and reports reviewed did not provide enough credible evidence to refute this conclusion. Additionally, the benefits ascribed to this product can be more economically achieved using other currently available products such as slag and silica fume. The recommendation is that this product not be approved for use on State projects in Iowa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A review of the Iowa Department of Transportation's field data collection and reporting system has been performed. Included were several systems used by the Office of Construction and Local Jurisdictions. The entire field data collection and reporting systems for asphalt cement concrete (ACC) paving, portland cement concrete (PCC) paving, and PCC structures were streamlined and computerized. The field procedures for materials acceptance were also reviewed. Best practices were identified and a method was developed to prioritize materials so transportation agencies could focus their efforts on high priority materials. Iowa State University researchers facilitated a discussion about Equal Employment Opportunity (EEO) and Affirmative Action (AA) procedures between the Office of Construction field staff and the Office of Contracts. A set of alternative procedures was developed. Later the Office of Contracts considered these alternatives as they developed new procedures that are currently being implemented. The job close-out package was reviewed and two unnecessary procedures were eliminated. Numerous other procedures were reviewed and flowcharted. Several changes have been recommended that will increase efficiency and allow staff time to be devoted to higher priority activities. It is estimated the improvements in ACC paving, PCC paving and structural concrete will by similar to three full time equivalent (FTE) positions to field construction, field materials and Office of Materials. Elimination of EEO interviews will be equivalent to one FTE position. It is estimated that other miscellaneous changes will be equivalent to at least one other FTE person. This is a total five FTEs. These are conservative estimates based on savings that are easily quantified. It is likely that total positive effect is greater when items that are difficult to quantify are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asphalt concrete resurfacing is the most commonly utilized rehabilitation practice used by the Iowa Department of Transportation. The major problem with asphalt concrete resurfacing is the reflective cracking from underlying cracks and joints in the portland cement concrete (PCC) pavement. Cracking and seating the PCC prior to an asphalt overlay was the construction method evaluated in this project. There was cracking and seating on portions of the project and portions were overlaid without this process. There were also different overlay thicknesses used. Comparisons of crack and seating to the normal overlay method and the different depths are compared in this report. Cracking and seating results in some structural loss, but does reduce the problem of reflection cracking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In searching for simple and reliable test methods to evaluate the quality of Iowa portland cement concrete (PCC) pavements, the Duggan test was conducted for concretes made of twenty-six types of cements in this laboratory research. The influence of some factors, such as chemical composition and type of cements, use of air-entraining agent and water reducer, and water to cement ratio, on the result of the Duggan test was examined. It was found that the expansion increases with increasing values of potassium alkali (K2O) and sulfur trioxide (SO3) in cements. It was also found that the Type I cements generally produce higher expansion than the Type II, IP and IS cements. Since it is difficult to identify the major mechanism leading to the expansion observed in the Duggan test, more studies are certainly needed before it can be used as a reliable test method for evaluating the service life of concrete pavement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterization and categorization of coarse aggregates for use in portland cement concrete (PCC) pavements is a highly refined process at the Iowa Department of Transportation. Over the past 10 to 15 years, much effort has been directed at pursuing direct testing schemes to supplement or replace existing physical testing schemes. Direct testing refers to the process of directly measuring the chemical and mineralogical properties of an aggregate and then attempting to correlate those measured properties to historical performance information (i.e., field service record). This is in contrast to indirect measurement techniques, which generally attempt to extrapolate the performance of laboratory test specimens to expected field performance. The purpose of this research project was to investigate and refine the use of direct testing methods, such as X-ray analysis techniques and thermal analysis techniques, to categorize carbonate aggregates for use in portland cement concrete. The results of this study indicated that the general testing methods that are currently used to obtain data for estimating service life tend to be very reliable and have good to excellent repeatability. Several changes in the current techniques were recommended to enhance the long-term reliability of the carbonate database. These changes can be summarized as follows: (a) Limits that are more stringent need to be set on the maximum particle size in the samples subjected to testing. This should help to improve the reliability of all three of the test methods studied during this project. (b) X-ray diffraction testing needs to be refined to incorporate the use of an internal standard. This will help to minimize the influence of sample positioning errors and it will also allow for the calculation of the concentration of the various minerals present in the samples. (c) Thermal analysis data needs to be corrected for moisture content and clay content prior to calculating the carbonate content of the sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 1951 Greene County and the Iowa Highway Research Board paved County Road E-33 from Iowa Highway No. 17 (now Iowa 4) to Farlin with various thicknesses [ranging from 4.5 in. (11.4 cm) to 6 in. (15.2 cm)] of portland cement concrete pavement. The project, designated HR-9, was divided into ten research sections. This formed pavement was placed on the existing grade. Eight of the sections were non-reinforced except for centerline tie bars and no contraction joints were used. Mesh reinforcing and contraction joints spaced at 29 ft 7 in. (9.02 m) intervals were used in two 4.5-in. (11.4-cm) thick sections. The concrete in one of the sections was air entrained. Signs denoting the design and limits of the research sections were placed along the roadway. The pavement has performed well over its 28-year life, carrying a light volume of traffic safely while requiring no major maintenance. The 4.5-in. (11.4-cm) thick mesh-reinforced pavement with contraction joints has exhibited the best overall performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research project, HR-110, was begun in the fall of 1964 to further investigate the compositional and mechanical properties of some of the carbonate rocks used as aggregate in portland cement concrete. Samples were taken only from those portions of the quarries that are used as aggregate in portland cement concrete by the Iowa State Highway Commission except where designated by commission personnel for purposes of evaluation of potential aggregate sources. Where practical, the samples were taken from each bed recognized by the Highway Commission geologists, and in most instances, the thicker beds were sampled at the top, middle, and bottom to detect any lithologic changes that escaped megascopic observation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several primary techniques have been developed through which soil aggregate road material properties may be improved. Such techniques basically involve a mechanism of creating a continuous matrix system of soil and/or aggregate particles, interlocked through the use of some additive such as portland cement, lime, or bituminous products. Details by which soils are stabilized vary greatly, but they are dependent on the type of stabilizing agent and nature of the soil, though the overall approach to stabilization has the common feature that improvement is achieved by some mechanism(s) forcing individual particles to adhere to one another. This process creates a more rigid material, most often capable of resisting the influx of water during freezing, loss of strength due to high moisture content and particle dispersion during thawing, and loss of strength due to migration of fines and/or water by capillarity and pumping. The study reported herein, took a new and relatively different approach to strengthening of soils, i.e., improvement of roadway soils and/or soil-aggregate materials by structural reinforcement with randomly oriented fibers. The purpose of the study was to conduct a laboratory and field investigation into the potential of improving (a) soil-aggregate surfaced and subgrade materials, including those that are frost-prone and/or highly moisture susceptible, and (b) localized base course materials, by uniting such materials through fibrous reinforcement. The envisioned objective of the project was the development of a simple construction technique(s) that could be (a) applied on a selective basis to specific areas having a history of poor performance, or (b) used for improvement of potential base materials prior to surfacing. Little background information on such purpose and objective was available. Though the envisioned process had similarities to fibrous reinforced concrete, and to fibrous reinforced resin composites, the process was devoid of a cementitious binder matrix and thus highly dependent on the cohesive and frictional interlocking processes of a soil and/or aggregate with the fibrous reinforcement; a condition not unlike the introduction of reinforcing bars into a concrete sand/aggregate mixture without benefit of portland cement. Thus the study was also directed to answering some fundamental questions: (1) would the technique work; (2) what type or types of fibers are effective; (3) are workable fibers commercially available; and (4) can such fibers be effectively incorporated with conventional construction equipment, and employed in practical field applications? The approach to obtaining answers to these questions, was guided by the philosophy that an understanding of basic fundamentals was essential to developing a body of engineering knowledge, that would serve as the basis for eventual development of design procedures with fibrous products for the applications previously noted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iowa DOT research in 1986, demonstrated that carbide tooth milling can produce an acceptable surface texture. Based upon that research, specifications were developed for "Pavement Surface Repair (Milling)". This specification was applied to reprofile a nine-mile section of badly faulted portland cement concrete (pcc) pavement on route 163 just east of Des Moines. The Profile Index (measured with a 25-foot California Profilograph) was improved from an average of 55.2 inches per mile prior to milling to 10.6 inches per mile after milling. The bid price was $0.75 per square yard for pcc containing limestone coarse aggregate and $1.21 for pcc containing gravel coarse aggregate. Carbide tooth milling should be considered as an acceptable alternate method of reprofiling even though there is some spalling of joints.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report presents results of research on ways to reduce the detrimental effects of sulfate-tainted rock salt deicers on portland cement concrete used for highway pavements. Repetitious experiments on the influence of fly ash on the mortar phase of concrete showed significant improvement in resistance to deicing brines is possible. Fifteen to twenty percent by weight of fly ash replacement for portland cement was found to provide optimum improvement. Fly ashes from five sources were evaluated and all were found to be equally beneficial. Preliminary results indicate the type of coarse aggregate also plays an important role in terms of concrete resistance to freeze-thaw in deicing brines. This was particularly true for a porous ferroan dolomite thought to be capable of reaction with the brine. In this case fly ash improved the concrete, but not enough for satisfactory performance. An intermediate response was with a porous limestone where undesirable results were observed without fly ash and adequate performance was realized when 15% fly ash was added. The best combination for making deicer-resistant concrete was found to be with a non-porous limestone. Performance in brines was found to be adequate without fly ash, but better when fly ash was included. Consideration was given to treating existing hardened concrete made with poor aggregate and no fly ash to extend pavement life in the presence of deicers, particularly at joints. Sodium silicate was found to improve freeze-thaw resistance of mortar and is a good candidate for field usage because of its low cost and ease of handling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based upon the success the Iowa Department of Transportation has had using thin bonded, low slump, dense portland cement concrete on bridge decks for rehabilitation, it was decided to pursue research in the area of bonded portland cement concrete resurfacing of pavements. Since that time, in an effort to reduce costs, research was conducted into eliminating the grouting operation. On this project a non-grouted overlay was used to modernize an existing urban street. This research project is located in the City of Oskaloosa on 11th Avenue from South M Street to South Market Street. Construction of the project went well and the non-grouted overlay has performed very well to date.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 1986, the Iowa DOT installed 700 feet of International Barrier Corporation (IBC) barrier between the 1-235 eastbound off ramp and the adjacent eastbound loop on ramp at 8th Street in West Des Moines. It is a 3 foot 6 inch high sand-filled galvanized sheet metal barrier. The bid price on this project was $130 per lineal foot. It was evaluated annually for four years. During this time, there have been no severe accidents where vehicles hit the barrier. There are scrapes and dents indicating minor accidents. The barrier has performed very well and required no maintenance. Due to its initial cost, the IBC barrier is not as cost-effective as portland cement concrete barrier rails.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major problem with durability of asphalt cement concrete (ACC) overlays to rehabilitate jointed portland cement concrete (PCC) pavement comes from reflective cracking. The objective of this research was to evaluate the effectiveness of Glasgrid in regard to preventing reflection cracking. Glasgrid is a glass fiber mesh with 1/2 inch by 1 inch openings (Figure 1). Each strand is composed of many small glass fibers. After the grid is formed, it is coated with a polymer modified asphalt cement. In 1986, four experimental Glasgrid test sections were incorporated into Polk County project IR-35-2(191)67--12-77 on Interstate 35 from IA 5 to the west 1-80 interchange on the west edge of Des Moines, Single and double layers of Glasgrid were placed over transverse cracks and joints of the existing PCC pavement. The Glasgrid was placed on the PCC pavement for one section and between lifts of the ACC resurfacing on the other three sections. The four Glasgrid sections were compared to two sections without Glasgrid for four years. The sections were reviewed annually to determine how many cracks or joints had reflected through the resurfacing. Glasgrid placed on the PCC pavement was more effective at preventing reflection cracking than Glasgrid between lifts of AC resurfacing. In general, Glasgrid yielded a small reduction or retardation in the amount of reflection cracking, but not sufficient to justify additional expense for the use of Glasgrid.